Comparison of data-based methods for non-parametric density estimation

dc.contributor.advisorThompson, James R.en_US
dc.contributor.committeeMemberScott, David W.en_US
dc.contributor.committeeMemberGorry, G. Anthonyen_US
dc.creatorFactor, Lynette Ethelen_US
dc.date.accessioned2018-12-18T21:29:30Zen_US
dc.date.available2018-12-18T21:29:30Zen_US
dc.date.issued1979en_US
dc.description.abstractThere have been recent developments in data-based methods for estimating densities non-parametrically. In this work we shall compare some methods developed by Scott, Duin and Wahba according to their sensitivity, statistical accuracy and cost of implementation when applied to one-dimensional data sets. We shall illustrate the limitations and tradeoffs of each method. The estimates obtained by each method will also be compared to the maximum likelihood univariate Gaussian estimate. We shall also illustrate the application of Duin's method to two-dimensional data sets and compare the results to the maximum likelihood bivariate Gaussian estimate.en_US
dc.format.digitalOriginreformatted digitalen_US
dc.format.extent60 ppen_US
dc.identifier.callnoThesis Math. Sci. 1979 Factoren_US
dc.identifier.citationFactor, Lynette Ethel. "Comparison of data-based methods for non-parametric density estimation." (1979) Master’s Thesis, Rice University. <a href="https://hdl.handle.net/1911/104727">https://hdl.handle.net/1911/104727</a>.en_US
dc.identifier.digitalRICE2363en_US
dc.identifier.urihttps://hdl.handle.net/1911/104727en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.titleComparison of data-based methods for non-parametric density estimationen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematical Sciencesen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Artsen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RICE2363.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format