Maximum Stable Set Formulations and Heuristics Based on Continuous Optimization

dc.contributor.authorBurer, Samuelen_US
dc.contributor.authorMonteiro, Renatoen_US
dc.contributor.authorZhang, Yinen_US
dc.date.accessioned2018-06-18T17:48:15Zen_US
dc.date.available2018-06-18T17:48:15Zen_US
dc.date.issued2000-12en_US
dc.date.noteDecember 2000en_US
dc.description.abstractThe stability number for a given graph G is the size of a maximum stable set in G. The Lovasz theta number provides an upper bound on the stability number and can be computed as the optimal value of the Lovasz semidefinite program. In this paper, we show that restricting the matrix variable in the Lovasz semidefinite program to be rank-one or rank-two yields a pair of continuous, nonlinear optimization problems each having the global optimal value equal to the stability number. We propose heuristics for obtaining large stable sets in G based on these new formulations and present computational results indicating the effectiveness of the heuristics.en_US
dc.format.extent28 ppen_US
dc.identifier.citationBurer, Samuel, Monteiro, Renato and Zhang, Yin. "Maximum Stable Set Formulations and Heuristics Based on Continuous Optimization." (2000) <a href="https://hdl.handle.net/1911/101960">https://hdl.handle.net/1911/101960</a>.en_US
dc.identifier.digitalTR00-34en_US
dc.identifier.urihttps://hdl.handle.net/1911/101960en_US
dc.language.isoengen_US
dc.titleMaximum Stable Set Formulations and Heuristics Based on Continuous Optimizationen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR00-34.pdf
Size:
293.08 KB
Format:
Adobe Portable Document Format