Peridynamics and Applications

dc.contributor.advisorSpanos, Pol Den_US
dc.creatorChen, Jingkaien_US
dc.date.accessioned2019-05-16T19:57:52Zen_US
dc.date.available2019-05-16T19:57:52Zen_US
dc.date.created2017-08en_US
dc.date.issued2017-09-05en_US
dc.date.submittedAugust 2017en_US
dc.date.updated2019-05-16T19:57:52Zen_US
dc.description.abstractPeridynamics is a nonlocal mechanics theory using integro-differential equations without spatial derivatives. Unlike the classical continuum mechanics, peridynamics possesses certain advantages when solving problems involving cracks. In the beginning of the thesis, an analytical solution to the vibration problem via fixed horizon peridynamics is developed, including dynamic responses of a bar and of a beam. The analytical solution to the vibration of the bar is derived through a Taylor series expansion approximation. Numerical examples demonstrate the nonlocal dynamic behavior of the bar and its consistency, in the limit, with local behavior. Further, a new nonlocal beam theory is proposed. The proposed nonlocal beam equation is a generalization of the Euler-Bernoulli beam equation. An analytical solution for the beam deformation is derived. The numerical example of the nonlocal beam deformation shows that the fixed horizon peridynamics has boundary conditions related inaccuracy problems. Thus, a new numerical technique to reduce the discrepancy problem is introduced, which is called: Variable Horizon Peridynamics. This method is quite efficient and it does not require a pseudo-layer to be added outside the physical boundary. Next, an efficient algorithm to model the bit-rock interaction process based on the variable horizon peridynamics is developed. This model iterates adaptively with the propagation of the crack and with the penetration of the drill bit. The crack propagation in the rock is captured in this model. The relationship between the penetration rate and other drilling parameters is investigated. Finally, the Navier-Stokes equation is reformulated in a nonlocal sense via the variable horizon peridynamics. It is shown that the reformulated Navier-Stokes equation satisfies Newton’s second law. When the nonlocal parameter reduces to zero, the reformulated Navier-Stokes equation reduces to the classical Navier-Stokes equation. To elucidate the features of the approach, numerical examples of both local and nonlocal Navier-Stokes equations are used.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationChen, Jingkai. "Peridynamics and Applications." (2017) Diss., Rice University. <a href="https://hdl.handle.net/1911/105458">https://hdl.handle.net/1911/105458</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/105458en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectPeridynamicsen_US
dc.subjectNonlocal Beamen_US
dc.subjectNonlocal Navier-stokes Equationen_US
dc.subjectBit-rock Interaction Modelingen_US
dc.titlePeridynamics and Applicationsen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMechanical Engineeringen_US
thesis.degree.disciplineEngineeringen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.majorNonlocal Mechanicsen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
CHEN-DOCUMENT-2017.pdf
Size:
21.16 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.83 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description: