The Lack of Positive Definiteness in the Hessian in Constrained Optimization

dc.contributor.authorFontecilla, Rodrigoen_US
dc.date.accessioned2018-06-18T17:23:12Zen_US
dc.date.available2018-06-18T17:23:12Zen_US
dc.date.issued1983-06en_US
dc.date.noteJune 1983en_US
dc.description.abstractThe use of the DFP or the BFGS secant updates requires the Hessian at the solution to be positive definite. The second order sufficiency conditions insure the positive definiteness only in a subspace of R^n. Conditions are given so we can safely update with either update. A new class of algorithms is proposed which generate a sequence {xk} converging 2-step q-superlinearly. We also propose two specific algorithms: One converges q-superlinearly if the Hessian is positive definite in R^n and converges 2-step q-superlinearly if the Hessian is positive definite only in a subspace; the second one generates a sequence converging 1-step q-superlinearly. While the former costs one extra gradient evaluation, the latter costs one extra gradient evaluation and one extra function evaluation on the constraints.en_US
dc.format.extent36 ppen_US
dc.identifier.citationFontecilla, Rodrigo. "The Lack of Positive Definiteness in the Hessian in Constrained Optimization." (1983) <a href="https://hdl.handle.net/1911/101558">https://hdl.handle.net/1911/101558</a>.en_US
dc.identifier.digitalTR83-17en_US
dc.identifier.urihttps://hdl.handle.net/1911/101558en_US
dc.language.isoengen_US
dc.titleThe Lack of Positive Definiteness in the Hessian in Constrained Optimizationen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR83-17.pdf
Size:
491.48 KB
Format:
Adobe Portable Document Format