Multiscale random projections for compressive classification

dc.citation.bibtexNameinproceedingsen_US
dc.citation.journalTitleIEEE International Conference on Image Processing (ICIP)en_US
dc.citation.locationSan Antonio, Texasen_US
dc.contributor.authorDuarte, Marco F.en_US
dc.contributor.authorDavenport, Mark A.en_US
dc.contributor.authorWakin, Michael B.en_US
dc.contributor.authorLaska, Jason N.en_US
dc.contributor.authorTakhar, Dharmpalen_US
dc.contributor.authorKelly, Kevin F.en_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.date.accessioned2008-08-19T03:20:25Zen_US
dc.date.available2008-08-19T03:20:25Zen_US
dc.date.issued2007-09-01en_US
dc.description.abstractWe propose a framework for exploiting dimension-reducing random projections in detection and classification problems. Our approach is based on the generalized likelihood ratio test; in the case of image classification, it exploits the fact that a set of images of a fixed scene under varying articulation parameters forms a low-dimensional, nonlinear manifold. Exploiting recent results showing that random projections stably embed a smooth manifold in a lower-dimensional space, we develop the multiscale smashed filter as a compressive analog of the familiar matched filter classifier. In a practical target classification problem using a single-pixel camera that directly acquires compressive image projections, we achieve high classification rates using many fewer measurements than the dimensionality of the images.en_US
dc.description.sponsorshipSupported by NSF, ONR, AFOSR, DARPA and the Texas Instruments Leadership University Program. Thanks to Texas Instruments for providing the TI DMD developer’s kit and accessory light modulator package (ALP).en_US
dc.identifier.citationM. F. Duarte, M. A. Davenport, M. B. Wakin, J. N. Laska, D. Takhar, K. F. Kelly and R. G. Baraniuk, "Multiscale random projections for compressive classification," <i>IEEE International Conference on Image Processing (ICIP),</i> 2007.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/ICIP.2007.4379546en_US
dc.identifier.urihttps://hdl.handle.net/1911/21681en_US
dc.language.isoengen_US
dc.subjectdata compressionen_US
dc.subjectimage codingen_US
dc.subjectimage classificationen_US
dc.subjectobject recognitionen_US
dc.titleMultiscale random projections for compressive classificationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sf_icip07.pdf
Size:
401.31 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections