Regression level set estimation via cost-sensitive classification

dc.citation.bibtexNamearticleen_US
dc.citation.issueNumber6en_US
dc.citation.journalTitleIEEE Transactions on Signal Processingen_US
dc.citation.lastpage2757en_US
dc.citation.volumeNumber55en_US
dc.contributor.authorScott, Clayton D.en_US
dc.contributor.authorDavenport, Mark A.en_US
dc.date.accessioned2008-08-18T23:19:17Zen_US
dc.date.available2008-08-18T23:19:17Zen_US
dc.date.issued2007-06-01en_US
dc.description.abstractRegression level set estimation is an important yet understudied learning task. It lies somewhere between regression function estimation and traditional binary classification, and in many cases is a more appropriate setting for questions posed in these more common frameworks. This note explains how estimating the level set of a regression function from training examples can be reduced to cost-sensitive classification. We discuss the theoretical and algorithmic benefits of this learning reduction, demonstrate several desirable properties of the associated risk, and report experimental results for histograms, support vector machines, and nearest neighbor rules on synthetic and real data.en_US
dc.description.sponsorshipNSF Grant No. 0240058en_US
dc.identifier.citationC. D. Scott and M. A. Davenport, "Regression level set estimation via cost-sensitive classification," <i>IEEE Transactions on Signal Processing,</i> vol. 55, no. 6, 2007.en_US
dc.identifier.doihttp://dx.doi.org/10.1109/TSP.2007.893758en_US
dc.identifier.urihttps://hdl.handle.net/1911/21678en_US
dc.language.isoengen_US
dc.subjectcost-sensitive classificationen_US
dc.subjectlearning reductionen_US
dc.subjectregression level set estimationen_US
dc.subjectsupervised learningen_US
dc.titleRegression level set estimation via cost-sensitive classificationen_US
dc.typeJournal articleen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
costset_final.pdf
Size:
298.87 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections