Lyapunov, Lanczos, and Inertia
dc.contributor.author | Antoulas, A.C. | en_US |
dc.contributor.author | Sorensen, D.C. | en_US |
dc.date.accessioned | 2018-06-18T17:48:13Z | en_US |
dc.date.available | 2018-06-18T17:48:13Z | en_US |
dc.date.issued | 2000-05 | en_US |
dc.date.note | May 2000 | en_US |
dc.description.abstract | We present a new proof of the inertia result associated with Lyapunov equations. Furthermore we present a connection between the Lyapunov equation and the Lanczos process which is closely related to the Schwarz form of a matrix. We provide a method for reducing a general matrix to Schwarz form in a finite number of steps (O(n3)). Hence, we provide a finite method for computing inertia without computing eigenvalues. This scheme is unstable numerically and hence is primarily of theoretical interest. | en_US |
dc.format.extent | 12 pp | en_US |
dc.identifier.citation | Antoulas, A.C. and Sorensen, D.C.. "Lyapunov, Lanczos, and Inertia." (2000) <a href="https://hdl.handle.net/1911/101942">https://hdl.handle.net/1911/101942</a>. | en_US |
dc.identifier.digital | TR00-13 | en_US |
dc.identifier.uri | https://hdl.handle.net/1911/101942 | en_US |
dc.language.iso | eng | en_US |
dc.title | Lyapunov, Lanczos, and Inertia | en_US |
dc.type | Technical report | en_US |
dc.type.dcmi | Text | en_US |
Files
Original bundle
1 - 1 of 1