Dual-Variable Schwarz Methods for Mixed Finite Elements

dc.contributor.authorCowsar, Lawrence C.en_US
dc.date.accessioned2018-06-18T17:41:08Zen_US
dc.date.available2018-06-18T17:41:08Zen_US
dc.date.issued1993-03en_US
dc.date.noteMarch 1993en_US
dc.description.abstractSchwarz methods for the mixed finite element discretization of second order elliptic problems are considered. By using an equivalence between mixed methods and conforming spaces first introduced in [13], it is shown that the condition number of the standard additive Schwarz method applied to the dual-variable system grows at worst like O(1+H/delta) in both two and three dimensions and for elements of any order. Here, H is the size of the subdomains, and delta is a measure of the overlap. Numerical results are presented that verify the bound.en_US
dc.format.extent27 ppen_US
dc.identifier.citationCowsar, Lawrence C.. "Dual-Variable Schwarz Methods for Mixed Finite Elements." (1993) <a href="https://hdl.handle.net/1911/101790">https://hdl.handle.net/1911/101790</a>.en_US
dc.identifier.digitalTR93-09en_US
dc.identifier.urihttps://hdl.handle.net/1911/101790en_US
dc.language.isoengen_US
dc.titleDual-Variable Schwarz Methods for Mixed Finite Elementsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR93-09.pdf
Size:
422.02 KB
Format:
Adobe Portable Document Format