Rare gas alkali ionic excimers

dc.contributor.advisorSauerbrey, Roland A.
dc.creatorMillar, Pamela S.
dc.date.accessioned2009-06-04T00:36:11Z
dc.date.available2009-06-04T00:36:11Z
dc.date.issued1990
dc.description.abstractThe rare gas alkali ionic molecules are established as a new class of ionic excimers which emit in the vacuum ultraviolet (VUV) regime of the electromagnetic spectrum. Temporal and spectral characteristics of these species with (XeRb)$\sp{+}$ at 164 nm and (XeCs)$\sp{+}$ at 160 nm have been investigated by soft x-ray excitation in a laser-produced plasma and by high energy pulsed electron beam pumping in this work. Soft x-ray pumping of XeF(B $\to$ X) and (XeRb)$\sp{+}$ yielded the first observation of excimer molecules formed by reactive kinetics in a laser-produced plasma. The spectrum of (XeRb)$\sp{+}$ was observed. The spectral structure could be assigned to 3 dipole allowed transitions originating from the 0$\sp{+}$(II), 1(II), 1(I) upper states ending in the 0$\sp{+}$(I) ground state. A kinetic study of electron beam pumped mixtures of Ar/Xe/Rb and Ar/Xe/Cs was performed. The observed temporal decays of (XeRb)$\sp{+}$ and (XeCs)$\sp{+}$ were analyzed. The results suggest that electron deactivation is surprisingly not a dominant quenching process for rare gas alkali ions. The radiative lifetimes are 150 $\pm$ 50 ns for (XeCs)$\sp+$ and 250 $\pm$ 50 ns for (XeRb)$\sp+$. In addition several quenching rate constants were extracted from the experimental results. These rate constants and lifetimes were incorporated into a kinetic model for these species. This kinetic model reproduced the experimental observations well providing the electron quenching rate coefficient is kept to a maximum of 5 $\times$ 10$\sp{-9}$ cm$\sp3$s$\sp{-1}$. Estimates for the upper state densities were computed using this model to be $\sim$4 $\times$ 10$\sp{15}$ cm$\sp{-3}$ for (XeCs)$\sp+$ and 2 $\times$ 10$\sp{15}$ cm$\sp{-3}$ for (XeRb)$\sp+$. Including absorption due to the photoionization of the alkali atoms, the net gain coefficients are computed to be on the order of 10$\sp{-2}$ cm$\sp{-1}$. Therefore the rare gas alkali ionic excimers appear to be a promising class of candidates as storage media for VUV lasers.
dc.format.extent128 p.en_US
dc.format.mimetypeapplication/pdf
dc.identifier.callnoThesis E.E. 1990 Millar
dc.identifier.citationMillar, Pamela S.. "Rare gas alkali ionic excimers." (1990) Diss., Rice University. <a href="https://hdl.handle.net/1911/16370">https://hdl.handle.net/1911/16370</a>.
dc.identifier.urihttps://hdl.handle.net/1911/16370
dc.language.isoeng
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
dc.subjectMolecular physics
dc.subjectOptics
dc.subjectRadiation
dc.titleRare gas alkali ionic excimers
dc.typeThesis
dc.type.materialText
thesis.degree.departmentElectrical Engineering
thesis.degree.disciplineEngineering
thesis.degree.grantorRice University
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9110999.pdf
Size:
3.75 MB
Format:
Adobe Portable Document Format
Description: