Tuning support vector machines for minimax and Neyman-Pearson classification

dc.citation.bibtexNametechreporten_US
dc.citation.issueNumberTREE 0804en_US
dc.citation.journalTitleRice University ECE Technical Reporten_US
dc.contributor.authorScott, Clayton D.en_US
dc.contributor.authorBaraniuk, Richard G.en_US
dc.contributor.authorDavenport, Mark A.en_US
dc.date.accessioned2008-08-19T04:27:54Zen_US
dc.date.available2008-08-19T04:27:54Zen_US
dc.date.issued2008-08-19en_US
dc.description.abstractThis paper studies the training of support vector machine (SVM) classifiers with respect to the minimax and Neyman-Pearson criteria. In principle, these criteria can be optimized in a straightforward way using a cost-sensitive SVM. In practice, however, because these criteria require especially accurate error estimation, standard techniques for tuning SVM parameters, such as crossvalidation, can lead to poor classifier performance. To address this issue, we first prove that the usual cost-sensitive SVM, here called the 2C-SVM, is equivalent to another formulation called the 2nu-SVM. We then exploit a characterization of the 2nu-SVM parameter space to develop a simple yet powerful approach to error estimation based on smoothing. In an extensive experimental study we demonstrate that smoothing significantly improves the accuracy of cross-validation error estimates, leading to dramatic performance gains. Furthermore, we propose coordinate descent strategies that offer significant gains in computational efficiency, with little to no loss in performance.en_US
dc.identifier.citationC. D. Scott, R. G. Baraniuk and M. A. Davenport, "Tuning support vector machines for minimax and Neyman-Pearson classification," <i>Rice University ECE Technical Report,</i> no. TREE 0804, 2008.en_US
dc.identifier.urihttps://hdl.handle.net/1911/21684en_US
dc.language.isoengen_US
dc.subjecterror estimationen_US
dc.subjectminimax classificationen_US
dc.subjectsupport vector machinesen_US
dc.subjectNeyman-Pearson classificationen_US
dc.subjectparameter selectionen_US
dc.titleTuning support vector machines for minimax and Neyman-Pearson classificationen_US
dc.typeReporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ecsvm_preprint.pdf
Size:
541.97 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections