Optimal Choice of the Kernel Function for the Parzen Kernel-type Density Estimators

dc.citation.bibtexNametechreporten_US
dc.citation.issueNumberTR7501en_US
dc.citation.journalTitleRice University ECE Technical Reporten_US
dc.contributor.authorKazakos, D.en_US
dc.date.accessioned2007-10-31T00:49:11Zen_US
dc.date.available2007-10-31T00:49:11Zen_US
dc.date.issued1975-04-20en_US
dc.date.modified2003-10-22en_US
dc.date.submitted2003-08-18en_US
dc.descriptionTech Reporten_US
dc.description.abstractLet W<sub>p</sub><sup>(2)</sup> be the Sobolev space of probability density functions f(X) whose first derivative is absolutely continuous and whose second derivative is in L<sub>p</sub>(- &#8734; ,+ &#8734;), for p &#8712; [1, + &#8734;]. Using an upper bound to the mean square error for a fixed X E [f(X) - f<sub>n</sub>(X)0]<sup>2</sup>, found by G. Wahba, where f<sub>n</sub>(X) is the Parzen Kernel-type estimate of f(X), we find the finite support Kernel function K(X) that minimizes the said upper bound. The optimal Kernel funciton is: K(y) = (1+a<sup>-1</sup>) (2T)<sup>-1</sup> [1-T<sup>-a</sup> |y|<sup>a</sup>], for |y|<T where [-T,T] is the support interval, and a=2-p<sup>-1</sup>.en_US
dc.identifier.citationD. Kazakos, "Optimal Choice of the Kernel Function for the Parzen Kernel-type Density Estimators," <i>Rice University ECE Technical Report,</i> no. TR7501, 1975.en_US
dc.identifier.urihttps://hdl.handle.net/1911/20004en_US
dc.language.isoengen_US
dc.subjectkernelen_US
dc.subjectparzenen_US
dc.subject.keywordkernelen_US
dc.subject.keywordparzenen_US
dc.titleOptimal Choice of the Kernel Function for the Parzen Kernel-type Density Estimatorsen_US
dc.typeReporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kaz1975Apr9OptimalCh.PDF
Size:
661.29 KB
Format:
Adobe Portable Document Format
Collections