A Unified Framework for Multimodal IC Trojan Detection

Date
2010-02-02
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

This paper presents a unified formal framework for integrated circuits (IC) Trojan detection that can simultaneously employ multiple noninvasive measurement types. Hardware Trojans refer to modifications, alterations, or insertions to the original IC for adversarial purposes. The new framework formally defines the IC Trojan detection for each measurement type as an optimization problem and discusses the complexity. A formulation of the problem that is applicable to a large class of Trojan detection problems and is submodular is devised. Based on the objective function properties, an efficient Trojan detection method with strong approximation and optimality guarantees is introduced. Signal processing methods for calibrating the impact of inter-chip and intra-chip correlations are presented. We define a new sensitivity metric which formally quantifies the impact of modifications to each gate on the Trojan detection. Using the new metric, we compare the Trojan detection capability of the different measurement types for static (quiescent) current, dynamic (transient) current, and timing (delay) measurements. We propose a number of methods for combining the detections of the different measurement types and show how the sensitivity results can be used for a systematic combining of the detection results. Experimental evaluations on benchmark designs reveal the low-overhead and effectiveness of the new Trojan detection framework and provides a comparison of different detection combining methods.

Description
Advisor
Degree
Type
Technical report
Keywords
Citation

Alkabani, Yousra, Koushanfar, Farinaz and Mirhoseini, Azalia. "A Unified Framework for Multimodal IC Trojan Detection." (2010) https://hdl.handle.net/1911/96384.

Has part(s)
Forms part of
Published Version
Rights
You are granted permission for the noncommercial reproduction, distribution, display, and performance of this technical report in any format, but this permission is only for a period of forty-five (45) days from the most recent time that you verified that this technical report is still available from the Computer Science Department of Rice University under terms that include this permission. All other rights are reserved by the author(s).
Link to license
Citable link to this page