Analysis of Decision-Feedback Based Broadband OFDM Systems

dc.citation.bibtexNameinproceedingsen_US
dc.citation.conferenceNameAsilomar Conference on Signals, Systems, and Computersen_US
dc.contributor.authorde Baynast, Alexandreen_US
dc.contributor.authorSabharwal, Ashutoshen_US
dc.contributor.authorAazhang, Behnaamen_US
dc.contributor.orgCenter for Multimedia Communications (http://cmc.rice.edu/)en_US
dc.date.accessioned2007-10-31T00:41:57Zen_US
dc.date.available2007-10-31T00:41:57Zen_US
dc.date.issued2005-11-01en_US
dc.date.modified2005-06-23en_US
dc.date.note2005-06-22en_US
dc.date.submitted2005-11-01en_US
dc.descriptionConference paperen_US
dc.description.abstractIn wireless communications, about 25% of the bandwidth is dedicated to training symbols for channel estimation. By using a semi-blind approach, the training sequence length can be reduced while improving performance. The principle is as follows: the detected symbols (hard decision) are fed back to the channel estimator in order to re-estimate the channel more accurately. However, semi-blind approach can significantly deteriorate the performance if the bit error rate is high. In this paper, we propose to determine analytically the minimum Signal to Noise Ratio (SNR) from which a semi-blind method starts to outperform a training sequence based only system.en_US
dc.identifier.citationA. de Baynast, A. Sabharwal and B. Aazhang, "Analysis of Decision-Feedback Based Broadband OFDM Systems," 2005.en_US
dc.identifier.urihttps://hdl.handle.net/1911/19839en_US
dc.language.isoengen_US
dc.subjectSemi-blinden_US
dc.subjectDecision-Feedback Equalizeren_US
dc.subjectOFDM systemen_US
dc.subject.keywordSemi-blinden_US
dc.subject.keywordDecision-Feedback Equalizeren_US
dc.subject.keywordOFDM systemen_US
dc.titleAnalysis of Decision-Feedback Based Broadband OFDM Systemsen_US
dc.typeConference paperen_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
deB2005Nov5Analysisof.PDF
Size:
68.76 KB
Format:
Adobe Portable Document Format
Collections