Stable Maintenance of Multiple Plasmids in E. coli Using a Single Selective Marker

dc.citation.issueNumber445-450en_US
dc.citation.journalTitleACS Synthetic Biologyen_US
dc.citation.volumeNumber1en_US
dc.contributor.authorSchmidt, Calvin M.
dc.contributor.authorShis, David L.
dc.contributor.authorNguyen-Huu, Truong D.
dc.contributor.authorBennett, Matthew R.
dc.contributor.orgInstitute of Biosciences and Bioengineering
dc.date.accessioned2013-01-29T20:27:03Z
dc.date.available2014-01-30T06:10:04Z
dc.date.issued2012
dc.description.abstractPlasmid-based genetic systems in Escherichia coli are a staple of synthetic biology. However, the use of plasmids imposes limitations on the size of synthetic gene circuits and the ease with which they can be placed into bacterial hosts. For instance, unique selective markers must be used for each plasmid to ensure their maintenance in the host. These selective markers are most often genes encoding resistance to antibiotics such as ampicillin or kanamycin. However, the simultaneous use of multiple antibiotics to retain different plasmids can place undue stress on the host and increase the cost of growth media. To address this problem, we have developed a method for stably transforming three different plasmids in E. coli using a single antibiotic selective marker. To do this, we first examined two different systems with which two plasmids may be maintained. These systems make use of either T7 RNA polymerase-specific regulation of the resistance gene or split antibiotic resistance enzymes encoded on separate plasmids. Finally, we combined the two methods to create a system with which three plasmids can be transformed and stably maintained using a single selective marker. This work shows that large-scale plasmid-based synthetic gene circuits need not be limited by the use of multiple antibiotic resistance genes.
dc.embargo.terms1 year
dc.identifier.citationSchmidt, Calvin M., Shis, David L., Nguyen-Huu, Truong D., et al.. "Stable Maintenance of Multiple Plasmids in E. coli Using a Single Selective Marker." <i>ACS Synthetic Biology,</i> 1, no. 445-450 (2012) American Chemical Society: http://dx.doi.org/10.1021/sb3000589.
dc.identifier.doihttp://dx.doi.org/10.1021/sb3000589
dc.identifier.urihttps://hdl.handle.net/1911/69864
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.titleStable Maintenance of Multiple Plasmids in E. coli Using a Single Selective Marker
dc.typeJournal article
dc.type.dcmiText
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stable Maintenance.pdf
Size:
1.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: