Casson towers and filtrations of the smooth knot concordance group

dc.contributor.advisorCochran, Tim D.en_US
dc.contributor.committeeMemberHarvey, Shellyen_US
dc.contributor.committeeMemberWarren, Joeen_US
dc.creatorRay, Arunimaen_US
dc.date.accessioned2014-10-10T15:24:12Zen_US
dc.date.available2014-10-10T15:24:12Zen_US
dc.date.created2014-05en_US
dc.date.issued2014-04-16en_US
dc.date.submittedMay 2014en_US
dc.date.updated2014-10-10T15:24:13Zen_US
dc.description.abstractThe 4-dimensional equivalence relation of concordance (smooth or topological) gives a group structure on the set of knots, under the connected-sum operation. The n-solvable filtration of the knot concordance group (denoted C), due to Cochran-Orr-Teichner, has been instrumental in the study of knot concordance in recent years. Part of its significance is due to the fact that certain geometric attributes of a knot imply membership in various levels of the filtration. We show the counterpart of this fact for two new filtrations of C due to Cochran-Harvey-Horn, the positive and negative filtrations. The positive and negative filtrations have definitions similar to that of the n-solvable filtration, but have the ability (unlike the n-solvable filtrations) to distinguish between smooth and topological concordance. Our geometric counterparts for the positive and negative filtrations of C are defined in terms of Casson towers, 4-dimensional objects which approximate disks in a precise manner. We establish several relationships between these new Casson tower filtrations and the various previously known filtrations of C, such as the n-solvable, positive, negative, and grope filtrations. These relationships allow us to draw connections between some well-known open questions in the field.en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationRay, Arunima. "Casson towers and filtrations of the smooth knot concordance group." (2014) Diss., Rice University. <a href="https://hdl.handle.net/1911/77507">https://hdl.handle.net/1911/77507</a>.en_US
dc.identifier.urihttps://hdl.handle.net/1911/77507en_US
dc.language.isoengen_US
dc.rightsCopyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.en_US
dc.subjectKnot theoryen_US
dc.subjectKnot concordanceen_US
dc.subjectCasson towersen_US
dc.titleCasson towers and filtrations of the smooth knot concordance groupen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentMathematicsen_US
thesis.degree.disciplineNatural Sciencesen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelDoctoralen_US
thesis.degree.nameDoctor of Philosophyen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RAY-DOCUMENT-2014.pdf
Size:
507.46 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.6 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description: