Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems

dc.contributor.authorAbramson, Mark A.en_US
dc.date.accessioned2018-06-18T17:49:15Zen_US
dc.date.available2018-06-18T17:49:15Zen_US
dc.date.issued2002-08en_US
dc.date.noteAugust 2002en_US
dc.descriptionThis work was also published as a Rice University thesis/dissertation: http://hdl.handle.net/1911/18502en_US
dc.description.abstractA new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. The Audet-Dennis Generalized Pattern Search (GPS) algorithm for bound constrained mixed variable optimization problems is extended to problems with general nonlinear constraints by incorporating a filter, in which new iterates are accepted whenever they decrease the incumbent objective function value or constraint violation function value. Additionally, the algorithm can exploit any available derivative information (or rough approximation thereof) to speed convergence without sacrificing the flexibility often employed by GPS methods to find better local optima. In generalizing existing GPS algorithms, the new theoretical convergence results presented here reduce seamlessly to existing results for more specific classes of problems. While no local continuity or smoothness assumptions are made, a hierarchy of theoretical convergence results is given, in which the assumptions dictate what can be proved about certain limit points of the algorithm. A new MatlabĀ® software package was developed to implement these algorithms. Numerical results are provided for several nonlinear optimization problems from the CUTE test set, as well as a difficult nonlinearly constrained mixed variable optimization problem in the design of a load-bearing thermal insulation system used in cryogenic applications.en_US
dc.format.extent193 ppen_US
dc.identifier.citationAbramson, Mark A.. "Pattern Search Algorithms for Mixed Variable General Constrained Optimization Problems." (2002) <a href="https://hdl.handle.net/1911/101991">https://hdl.handle.net/1911/101991</a>.en_US
dc.identifier.digitalTR02-11en_US
dc.identifier.urihttps://hdl.handle.net/1911/101991en_US
dc.language.isoengen_US
dc.titlePattern Search Algorithms for Mixed Variable General Constrained Optimization Problemsen_US
dc.typeTechnical reporten_US
dc.type.dcmiTexten_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR02-11.pdf
Size:
840.05 KB
Format:
Adobe Portable Document Format