Quantum Algebraic Geometry Codes

dc.contributor.advisorGoldman, Ronalden_US
dc.creatorHan, Zhengyien_US
dc.date.accessioned2025-01-16T20:55:50Zen_US
dc.date.created2024-12en_US
dc.date.issued2024-12-06en_US
dc.date.submittedDecember 2024en_US
dc.date.updated2025-01-16T20:55:50Zen_US
dc.description.abstractQuantum error correction is an essential aspect of quantum information theory, providing protection for quantum states against noise and decoherence. This thesis investigates the construction of quantum error correction codes derived from classical algebraic geometry (AG) codes. We present two distinct construction techniques, highlighting the flexibility and self-orthogonality of AG codes, and demonstrate their ability to produce asymptotically good quantum codes. Additionally, we explore strategies to fine-tune the parameters of classical AG codes, ensuring they possess the desired properties for quantum code construction. This work serves as a comprehensive guide to the fundamental concepts and common methodologies underlying quantum algebraic geometry codes.en_US
dc.embargo.lift2030-12-01en_US
dc.embargo.terms2030-12-01en_US
dc.format.mimetypeapplication/pdfen_US
dc.identifier.urihttps://hdl.handle.net/1911/118203en_US
dc.language.isoenen_US
dc.subjectquantum error correctionen_US
dc.subjectalgebraic geometryen_US
dc.titleQuantum Algebraic Geometry Codesen_US
dc.typeThesisen_US
dc.type.materialTexten_US
thesis.degree.departmentComputer Scienceen_US
thesis.degree.disciplineComputer Science, Computer Scienceen_US
thesis.degree.grantorRice Universityen_US
thesis.degree.levelMastersen_US
thesis.degree.nameMaster of Scienceen_US
Files
License bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
PROQUEST_LICENSE.txt
Size:
5.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
2.98 KB
Format:
Plain Text
Description: