Spin holography

Date
1995
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

In electron emission holography, the sources are electron emitting atoms. The primary (unscattered) electron wave interferes with the waves scattered elastically by nearby atoms resulting in a holographic fringe pattern in the angular distribution of the emitted electrons. In cases that the neighboring atoms have non-zero spins the scattered electron wave depends on the spin of the scattering atom by virtue of exchange scattering and the holographic fringes are spin dependent. This is the basis of the holographic spin imaging technique that we propose and discuss in this thesis, and which, we believe, will become a very powerful method for determining the short range spin environment of the electron source atoms in surface magnetism studies. We show that the "vector hologram" obtained by measuring the spin of the emitted electrons, S(scR), can be inverted to give a three-dimensional image of the magnetic environment of the electron emitting source atom. Of greater practical and theoretical interest, we show that the same information can be obtained from photoelectron intensity patterns, I(scR), ("scalar" spin holography) produced with incident linearly polarized photons. This surprising result is very important since it brings spin holography well within the realms of present day experimental capabilities available at synchrotron sources. In addition, we develop the theory for the related spin dependent EXAFS experiments, and show that the SPEXAFS data can be analyzed to yield much more information than previously realized. In particular, the SPEXAFS technique can be used for the study of antiferromagnetic spin arrangements, as well as ferromagnetic ones.

Description
Advisor
Degree
Doctor of Philosophy
Type
Thesis
Keywords
Radiation
Citation

Timmermans, Eddy M. E.. "Spin holography." (1995) Diss., Rice University. https://hdl.handle.net/1911/16890.

Has part(s)
Forms part of
Published Version
Rights
Copyright is held by the author, unless otherwise indicated. Permission to reuse, publish, or reproduce the work beyond the bounds of fair use or other exemptions to copyright law must be obtained from the copyright holder.
Link to license
Citable link to this page