Rice Graduate Student Collection
Permanent URI for this collection
Browse
Browsing Rice Graduate Student Collection by Subject "Carbon nanotubes"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Carbon Nanotubes Filled Polymer Composites: A Comprehensive Study on Improving Dispersion, Network Formation and Electrical Conductivity(Rice University, 2010) Chakravarthi, Divya Kannan; Barrera, Enrique V.In this dissertation, we determine how the dispersion, network formation and alignment of carbon nanotubes in polymer nanocomposites affect the electrical properties of two different polymer composite systems: high temperature bismaleimide (BMI) and polyethylene. The knowledge gained from this study will facilitate optimization of the above mentioned parameters, which would further enhance the electrical properties of polymer nanocomposites. BMI carbon fiber composites filled with nickel-coated single walled carbon nanotubes (Ni-SWNTs) were processed using high temperature vacuum assisted resin transfer molding (VARTM) to study the effect of lightning strike mitigation. Coating the SWNTs with nickel resulted in enhanced dispersions confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS). An improved interface between the carbon fiber and Ni-SWNTs resulted in better surface coverage on the carbon plies. These hybrid composites were tested for Zone 2A lightning strike mitigation. The electrical resistivity of the composite system was reduced by ten orders of magnitude with the addition of 4 weight percent Ni-SWNTs (calculated with respect to the weight of a single carbon ply). The Ni-SWNTs - filled composites showed a reduced amount of damage to simulated lightning strike compared to their unfilled counterparts indicated by the minimal carbon fiber pull out. Methods to reduce the electrical resistivity of 10 weight percent SWNTs -- medium density polyethylene (MDPE) composites were studied. The composites processed by hot coagulation method were subjected to low DC electric fields (10 V) at polymer melt temperatures to study the effect of viscosity, nanotube welding, dispersion and, resultant changes in electrical resistivity. The electrical resistivity of the composites was reduced by two orders of magnitude compared to 10 wt% CNT-MDPE baseline. For effective alignment of SWNTs, a new process called Electric field Vacuum Spray was devised to overcome viscosity within the dispersed nanotube polymer system, and produce conductive MDPE-SWNT thin films. Polarized Raman spectroscopy and scanning electron microscopy (SEM) analysis on the samples showed an improvement in SWNT -- SWNT contacts and alignment in the polymer matrix. The resistivity of the samples processed by this new method was two order magnitudes lower than the samples processed by hot coagulation method subjected to electric field.