Earth, Environmental and Planetary Sciences
Permanent URI for this community
Browse
Browsing Earth, Environmental and Planetary Sciences by Subject "Antarctica"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Morphometry of bedrock meltwater channels on Antarctic inner continental shelves: Implications for channel development and subglacial hydrology(Elsevier, 2020) Kirkham, James D.; Hogan, Kelly A.; Larter, Robert D.; Arnold, Neil S.; Nitsche, Frank O.; Kuhn, Gerhard; Gohl, Karsten; Anderson, John B.; Dowdeswell, Julian A.Expanding multibeam bathymetric data coverage over the last two decades has revealed extensive networks of submarine channels incised into bedrock on the Antarctic inner continental shelf. The large dimensions and prevalence of the channels implies the presence of an active subglacial hydrological system beneath the past Antarctic Ice Sheet which we can use to learn more about inaccessible subglacial processes. Here, we map and analyse over 2700 bedrock channels situated across >100,000 km2 of continental shelf in the western Antarctic Peninsula and Amundsen Sea to produce the first inventory of submarine channels on the Antarctic inner continental shelf. Morphometric analysis reveals highly similar distributions of channel widths, depths, cross-sectional areas and geometric properties, with subtle differences between channels in the western Antarctic Peninsula compared to those in the Amundsen Sea. At 75–3400 m wide, 3–280 m deep, 160–290,000 m2 in cross-sectional area, and typically 8 times as wide as they are deep, the channels have similar morphologies to tunnel valleys and meltwater channel systems observed from other formerly glaciated landscapes despite differences in substrate geology and glaciological regime. We propose that the Antarctic bedrock channels formed over multiple glacial cycles through the episodic drainage of at least 59 former subglacial lakes identified on the inner continental shelf.Item Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum(Elsevier, 2014) Hillenbrand, Claus-Dieter; Bentley, Michael J.; Stolldorf, Travis D.; Hein, Andrew S.; Kuhn, Gerhard; Graham, Alastair G.C.; Fogwill, Christopher J.; Kristoffersen, Yngve; Smith, James A.; Anderson, John B.; Larter, Robert D.; Melles, Martin; Hodgson, DomThe Weddell Sea sector is one of the main formation sites for Antarctic Bottom Water and an outlet for about one fifth of Antarctica's continental ice volume. Over the last few decades, studies on glacial–geological records in this sector have provided conflicting reconstructions of changes in ice-sheet extent and ice-sheet thickness since the Last Glacial Maximum (LGM at ca 23–19 calibrated kiloyears before present, cal ka BP). Terrestrial geomorphological records and exposure ages obtained from rocks in the hinterland of the Weddell Sea, ice-sheet thickness constraints from ice cores and some radiocarbon dates on offshore sediments were interpreted to indicate no significant ice thickening and locally restricted grounding-line advance at the LGM. Other marine geological and geophysical studies concluded that subglacial bedforms mapped on the Weddell Sea continental shelf, subglacial deposits and sediments over-compacted by overriding ice recovered in cores, and the few available radiocarbon ages from marine sediments are consistent with major ice-sheet advance at the LGM. Reflecting the geological interpretations, different ice-sheet models have reconstructed conflicting LGM ice-sheet configurations for the Weddell Sea sector. Consequently, the estimated contributions of ice-sheet build-up in the Weddell Sea sector to the LGM sea-level low-stand of ~130 m vary considerably. In this paper, we summarise and review the geological records of past ice-sheet margins and past ice-sheet elevations in the Weddell Sea sector. We compile marine and terrestrial chronological data constraining former ice-sheet size, thereby highlighting different levels of certainty, and present two alternative scenarios of the LGM ice-sheet configuration, including time-slice reconstructions for post-LGM grounding-line retreat. Moreover, we discuss consistencies and possible reasons for inconsistencies between the various reconstructions and propose objectives for future research. The aim of our study is to provide two alternative interpretations of glacial–geological datasets on Antarctic Ice-Sheet History for the Weddell Sea sector, which can be utilised to test and improve numerical ice-sheet models.Item Reconstruction of ice-sheet changes in the Antarctic Peninsula since the Last Glacial Maximum(Elsevier, 2014) Ó Cofaigh, Colm; Davies, Bethan J.; Livingstone, Stephen J.; Smith, James A.; Johnson, Joanne S.; Hocking, Emma P.; Hodgson, Dominic A.; Anderson, John B.; Bentley, Michael J.; Canals, Miquel; Domack, Eugene; Dowdeswell, Julian A.; Evans, Jeffrey; Glasser, Neil F.; Hillenbrand, Claus-Dieter; Larter, Robert D.; Roberts, Stephen J.; Simms, Alexander R.This paper compiles and reviews marine and terrestrial data constraining the dimensions and configuration of the Antarctic Peninsula Ice Sheet (APIS) from the Last Glacial Maximum (LGM) through deglaciation to the present day. These data are used to reconstruct grounding-line retreat in 5 ka time-steps from 25 ka BP to present. Glacial landforms and subglacial tills on the eastern and western Antarctic Peninsula (AP) shelf indicate that the APIS was grounded to the outer shelf/shelf edge at the LGM and contained a series of fast-flowing ice streams that drained along cross-shelf bathymetric troughs. The ice sheet was grounded at the shelf edge until ∼20 cal ka BP. Chronological control on retreat is provided by radiocarbon dates on glacimarine sediments from the shelf troughs and on lacustrine and terrestrial organic remains, as well as cosmogenic nuclide dates on erratics and ice moulded bedrock. Retreat in the east was underway by about 18 cal ka BP. The earliest dates on recession in the west are from Bransfield Basin where recession was underway by 17.5 cal ka BP. Ice streams were active during deglaciation at least until the ice sheet had pulled back to the mid-shelf. The timing of initial retreat decreased progressively southwards along the western AP shelf; the large ice stream in Marguerite Trough may have remained grounded at the shelf edge until about 14 cal ka BP, although terrestrial cosmogenic nuclide ages indicate that thinning had commenced by 18 ka BP. Between 15 and 10 cal ka BP the APIS underwent significant recession along the western AP margin, although retreat between individual troughs was asynchronous. Ice in Marguerite Trough may have still been grounded on the mid-shelf at 10 cal ka BP. In the Larsen-A region the transition from grounded to floating ice was established by 10.7–10.6 cal ka BP. The APIS had retreated towards its present configuration in the western AP by the mid-Holocene but on the eastern peninsula may have approached its present configuration several thousand years earlier, by the start of the Holocene. Mid to late-Holocene retreat was diachronous with stillstands, re-advances and changes in ice-shelf configuration being recorded in most places. Subglacial topography exerted a major control on grounding-line retreat with grounding-zone wedges, and thus by inference slow-downs or stillstands in the retreat of the grounding line, occurring in some cases on reverse bed slopes.