Statistics
Permanent URI for this community
Browse
Browsing Statistics by Subject "Bayesian hierarchical models"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Bayesian Integrative Model for Genetical Genomics with Spatially Informed Variable Selection(Libertas Academica, 2014) Cassese, Alberto; Guindani, Michele; Vannucci, MarinaWe consider a Bayesian hierarchical model for the integration of gene expression levels with comparative genomic hybridization (CGH) array measurements collected on the same subjects. The approach defines a measurement error model that relates the gene expression levels to latent copy number states. In turn, the latent states are related to the observed surrogate CGH measurements via a hidden Markov model. The model further incorpo-rates variable selection with a spatial prior based on a probit link that exploits dependencies across adjacent DNA segments. Posterior inference is carried out via Markov chain Monte Carlo stochastic search techniques. We study the performance of the model in simulations and show better results than those achieved with recently proposed alternative priors. We also show an application to data from a genomic study on lung squamous cell carcinoma, where we identify potential candidates of associations between copy number variants and the transcriptional activity of target genes. Gene ontology (GO) analyses of our findings reveal enrichments in genes that code for proteins involved in cancer. Our model also identifies a number of potential candidate biomarkers for further experimental validation.Item A hierarchical Bayesian model for inference of copy number variants and their association to gene expression(Institute of Mathematical Statistics, 2014) Cassese, Alberto; Guindani, Michele; Tadesse, Mahlet G.; Falciani, Francesco; Vannucci, MarinaA number of statistical models have been successfully developed for the analysis of high-throughput data from a single source, but few methods are available for integrating data from different sources. Here we focus on integrating gene expression levels with comparative genomic hybridization (CGH) array measurements collected on the same subjects. We specify a measurement error model that relates the gene expression levels to latent copy number states which, in turn, are related to the observed surrogate CGH measurements via a hidden Markov model. We employ selection priors that exploit the dependencies across adjacent copy number states and investigate MCMC stochastic search techniques for posterior inference. Our approach results in a unified modeling framework for simultaneously inferring copy number variants (CNV) and identifying their significant associations with mRNA transcripts abundance. We show performance on simulated data and illustrate an application to data from a genomic study on human cancer cell lines.