Statistics
Permanent URI for this community
Browse
Browsing Statistics by Subject "Azheimer’s disease"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease(Elsevier, 2016) Allen, Genevera I.; Amoroso, Nicola; Anghel, Catalina; Balagurusamy, Venkat; Bare, Christopher J.; Beaton, Derek; Bellotti, Roberto; Bennett, David A.; Boehme, Kevin L.; Boutros, Paul C.; Caberlotto, Laura; Caloian, Cristian; Campbell, Frederick; Neto, Elias Chaibub; Chang, Yu-Chuan; Chen, Beibei; Chen, Chien-Yu; Chien, Ting-Ying; Clark, Tim; Das, Sudeshna; Davatzikos, Christos; Deng, Jieyao; Dillenberger, Donna; Dobson, Richard J.B.; Dong, Qilin; Doshi, Jimit; Duma, Denise; Errico, Rosangela; Erus, Guray; Everett, Evan; Fardo, David W.; Friend, Stephen H.; Frӧhlich, Holger; Gan, Jessica; St George-Hyslop, Peter; Ghosh, Satrajit S.; Glaab, Enrico; Green, Robert C.; Guan, Yuanfang; Hong, Ming-Yi; Huang, Chao; Hwang, Jinseub; Ibrahim, Joseph; Inglese, Paolo; Iyappan, Anandhi; Jiang, Qijia; Katsumata, Yuriko; Kauwe, John S.K.; Klein, Arno; Kong, Dehan; Krause, Roland; Lalonde, Emilie; Lauria, Mario; Lee, Eunjee; Lin, Xihui; Liu, Zhandong; Livingstone, Julie; Logsdon, Benjamin A.; Lovestone, Simon; Ma, Tsung-wei; Malhotra, Ashutosh; Mangravite, Lara M.; Maxwell, Taylor J.; Merrill, Emily; Nagorski, John; Namasivayam, Aishwarya; Narayan, Manjari; Naz, Mufassra; Newhouse, Stephen J.; Norman, Thea C.; Nurtdinov, Ramil N.; Oyang, Yen-Jen; Pawitan, Yudi; Peng, Shengwen; Peters, Mette A.; Piccolo, Stephen R.; Praveen, Paurush; Priami, Corrado; Sabelnykova, Veronica Y.; Senger, Philipp; Shen, Xia; Simmons, Andrew; Sotiras, Aristeidis; Stolovitzky, Gustavo; Tangaro, Sabina; Tateo, Andrea; Tung, Yi-An; Tustison, Nicholas J.; Varol, Erdem; Vradenburg, George; Weiner, Michael W.; Xiao, Guanghua; Xie, Lei; Xie, Yang; Xu, Jia; Yang, Hojin; Zhan, Xiaowei; Zhou, Yunyun; Zhu, Fan; Zhu, Hongtu; Zhu, Shanfeng; Alzheimer’s Disease Neuroimaging InitiativeIdentifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance.