Civil and Environmental Engineering
Permanent URI for this community
Browse
Browsing Civil and Environmental Engineering by Subject "Ag3PO4/P25"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Bi-Polymer Electrospun Nanofibers Embedding Ag3PO4/P25 Composite for Efficient Photocatalytic Degradation and Anti-Microbial Activity(MDPI, 2020) Habib, Zunaira; Lee, Chang-Gu; Li, Qilin; Khan, Sher Jamal; Ahmad, Nasir Mahmood; Jamal, Yousuf; Huang, Xiaochuan; Javed, Hassan; NSF Nanosystem Engineering Research Center for Nanotechnology Enabled Water TreatmentUsing a bi-polymer system comprising of transparent poly(methyl methacrylate) (PMMA) and poly(vinyl pyrrolidone) (PVP), a visible light active Ag3PO4/P25 composite was immobilized into the mats of polymeric electrospun nanofibers. After nanofibers synthesis, sacrificial PVP was removed, leaving behind rough surface nanofibers with easy access to Ag3PO4/P25 composite. The remarkable photocatalytic efficiency was attained using a PMMA and Ag3PO4/P25 weight ratio of 1:0.6. Methyl orange (MO) was used to visualize pollutant removal and exhibited stable removal kinetics up to five consecutive cycles under simulated daylight. Also, these polymeric nanofibers (NFs) revealed an important role in the destruction of microorganisms (E. coli), signifying their potential in water purification. A thin film fibrous mat was also used in a small bench scale plug flow reactor (PFR) for polishing of synthetic secondary effluent and the effects of inorganic salts were studied upon photocatalytic degradation in terms of total organic carbon (TOC) and turbidity removal. Lower flow rate (5 mL/h) resulted in maximum TOC and turbidity removal rates of 86% and 50%, respectively. Accordingly, effective Ag3PO4/P25 immobilization into an ideal support material and selectivity towards target pollutants could both enhance the efficiency of photocatalytic process under solar radiations without massive energy input.