Browsing by Author "Zheng, Yi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Exploring the Relation between Contextual Social Determinants of Health and COVID-19 Occurrence and Hospitalization(MDPI, 2024) Chen, Aokun; Zhao, Yunpeng; Zheng, Yi; Hu, Hui; Hu, Xia; Fishe, Jennifer N.; Hogan, William R.; Shenkman, Elizabeth A.; Guo, Yi; Bian, JiangIt is prudent to take a unified approach to exploring how contextual social determinants of health (SDoH) relate to COVID-19 occurrence and outcomes. Poor geographically represented data and a small number of contextual SDoH examined in most previous research studies have left a knowledge gap in the relationships between contextual SDoH and COVID-19 outcomes. In this study, we linked 199 contextual SDoH factors covering 11 domains of social and built environments with electronic health records (EHRs) from a large clinical research network (CRN) in the National Patient-Centered Clinical Research Network (PCORnet) to explore the relation between contextual SDoH and COVID-19 occurrence and hospitalization. We identified 15,890 COVID-19 patients and 63,560 matched non-COVID-19 patients in Florida between January 2020 and May 2021. We adopted a two-phase multiple linear regression approach modified from that in the exposome-wide association (ExWAS) study. After removing the highly correlated SDoH variables, 86 contextual SDoH variables were included in the data analysis. Adjusting for race, ethnicity, and comorbidities, we found six contextual SDoH variables (i.e., hospital available beds and utilization, percent of vacant property, number of golf courses, and percent of minority) related to the occurrence of COVID-19, and three variables (i.e., farmers market, low access, and religion) related to the hospitalization of COVID-19. To our best knowledge, this is the first study to explore the relationship between contextual SDoH and COVID-19 occurrence and hospitalization using EHRs in a major PCORnet CRN. As an exploratory study, the causal effect of SDoH on COVID-19 outcomes will be evaluated in future studies.Item Roadmap on low-power electronics(AIP Publishing, 2024) Ramesh, Ramamoorthy; Salahuddin, Sayeef; Datta, Suman; Diaz, Carlos H.; Nikonov, Dmitri E.; Young, Ian A.; Ham, Donhee; Chang, Meng-Fan; Khwa, Win-San; Lele, Ashwin Sanjay; Binek, Christian; Huang, Yen-Lin; Sun, Yuan-Chen; Chu, Ying-Hao; Prasad, Bhagwati; Hoffmann, Michael; Hu, Jia-Mian; Yao, Zhi (Jackie); Bellaiche, Laurent; Wu, Peng; Cai, Jun; Appenzeller, Joerg; Datta, Supriyo; Camsari, Kerem Y.; Kwon, Jaesuk; Incorvia, Jean Anne C.; Asselberghs, Inge; Ciubotaru, Florin; Couet, Sebastien; Adelmann, Christoph; Zheng, Yi; Lindenberg, Aaron M.; Evans, Paul G.; Ercius, Peter; Radu, Iuliana P.Item The use of gadolinium-carbon nanostructures to magnetically enhance stem cell retention for cellular cardiomyoplasty(Elsevier, 2014) Tran, Lesa A.; Hernández-Rivera, Mayra; Berlin, Ari N.; Zheng, Yi; Sampaio, Luiz; Bové, Christina; Cabreira-Hansen, Maria da Graça; Willerson, James T.; Perin, Emerson C.; Wilson, Lon J.; Smalley Institute for Nanoscale Science and TechnologyIn this work, the effectiveness of using Gadonanotubes (GNTs) with an external magnetic field to improve retention of transplanted adult mesenchymal stem cells (MSCs) during cellular cardiomyoplasty was evaluated. As a high-performance T1-weighted magnetic resonance imaging (MRI) cell tracking label, the GNTs are gadolinium-loaded carbon nanotube capsules that render MSCs magnetic when internalized. MSCs were internally labeled with either superparamagnetic GNTs or colloidal diamagnetic lutetium (Lu). In vitro cell rolling assays and ex vivo cardiac perfusion experiments qualitatively demonstrated increased magnetic-assisted retention of GNT-labeled MSCs. Subsequent in vivo epicardial cell injections were performed around a 1.3 T NdFeB ring magnet sutured onto the left ventricle of female juvenile pigs (n = 21). Cell dosage, magnet exposure time, and endpoints were varied to evaluate the safety and efficacy of the proposed therapy. Quantification of retained cells in collected tissues by elemental analysis (Gd or Lu) showed that the external magnet helped retain nearly three times more GNT-labeled MSCs than Lu-labeled cells. The sutured magnet was tolerated for up to 168 h; however, an inflammatory response to the magnet was noted after 48 h. These proof-of-concept studies support the feasibility and value of using GNTs as a magnetic nanoparticle facilitator to improve cell retention during cellular cardiomyoplasty.