Browsing by Author "Zhang, Zhenghe"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Johnson–Schwartzman gap labelling for ergodic Jacobi matrices(EMS Press, 2023) Damanik, David; Fillman, Jake; Zhang, ZhengheWe consider two-sided Jacobi matrices whose coefficients are obtained by continuous sampling along the orbits of a homeomorphism on a compact metric space. Given an ergodic probability measure, we study the topological structure of the associated almost sure spectrum. We establish a gap labelling theorem in the spirit of Johnson and Schwartzman. That is, we show that the constant value the integrated density of states takes in a gap of the spectrum must belong to the countable Schwartzman group of the base dynamics. This result is a natural companion to a recent result of Alkorn and Zhang, which established a Johnson-type theorem for the families of Jacobi matrices in question.Item Positive Lyapunov exponents and a Large Deviation Theorem for continuum Anderson models, briefly(Elsevier, 2019) Bucaj, Valmir; Damanik, David; Fillman, Jake; Gerbuz, Vitaly; VandenBoom, Tom; Wang, Fengpeng; Zhang, ZhengheIn this short note, we prove positivity of the Lyapunov exponent for 1D continuum Anderson models by leveraging some classical tools from inverse spectral theory. The argument is much simpler than the existing proof due to Damanik–Sims–Stolz, and it covers a wider variety of random models. Along the way we note that a Large Deviation Theorem holds uniformly on compacts.Item Schrödinger operators with potentials generated by hyperbolic transformations: I—positivity of the Lyapunov exponent(Springer Nature, 2023) Avila, Artur; Damanik, David; Zhang, ZhengheWe consider discrete one-dimensional Schrödinger operators whose potentials are generated by sampling along the orbits of a general hyperbolic transformation. Specifically, we show that if the sampling function is a non-constant Hölder continuous function defined on a subshift of finite type with a fully supported ergodic measure admitting a local product structure and a fixed point, then the Lyapunov exponent is positive away from a discrete set of energies. Moreover, for sampling functions in a residual subset of the space of Hölder continuous functions, the Lyapunov exponent is positive everywhere. If we consider locally constant or globally fiber bunched sampling functions, then the Lyapuonv exponent is positive away from a finite set. Moreover, for sampling functions in an open and dense subset of the space in question, the Lyapunov exponent is uniformly positive. Our results can be applied to any subshift of finite type with ergodic measures that are equilibrium states of Hölder continuous potentials. In particular, we apply our results to Schrödinger operators defined over expanding maps on the unit circle, hyperbolic automorphisms of a finite-dimensional torus, and Markov chains.