Browsing by Author "Zhang, Wenqing"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Impregnation of KOAc on PdAu/SiO2 causes Pd-acetate formation and metal restructuring(Royal Society of Chemistry, 2023) Jacobs, Hunter P.; Elias, Welman C.; Heck, Kimberly N.; Dean, David P.; Dodson, Justin J.; Zhang, Wenqing; Arredondo, Jacob H.; Breckner, Christian J.; Hong, Kiheon; Botello, Christopher R.; Chen, Laiyuan; Mueller, Sean G.; Alexander, Steven R.; Miller, Jeffrey T.; Wong, Michael S.Potassium-promoted, oxide-supported PdAu is catalytically active for the gas-phase acetoxylation of ethylene to form vinyl acetate monomer (VAM), in which the potassium improves long-term activity and VAM selectivity. The alkali metal is incorporated into the catalyst via wet impregnation of its salt solution, and it is generally assumed that this common catalyst preparation step has no effect on the catalyst structure. However, in this work, we report evidence to the contrary. We synthesized a silica-supported PdAu (PdAu/SiO2, 8 wt% Pd, 4 wt% Au) model catalyst containing Pd-rich PdAu alloy and pure Au phases. Impregnation with potassium acetate (KOAc) aqueous solution and subsequent drying did not cause XRD-detectible changes to the bimetal structure. However, DRIFTS indicated the presence of Pd3(OAc)6 species, which is correlated to up to 2% Pd loss after washing of the dried KOAc-promoted PdAu/SiO2. Carrying out the impregnation step with an AcOH-only solution and subsequent drying caused significant enlargement of the pure Au grain size and generated a smaller amount of Pd3(OAc)6. During co-impregnation of AcOH and KOAc, grain sizes were enlarged slightly, and substantial amounts of K2Pd2(OAc)6 and Pd3(OAc)6 were detected by DRIFTS and correlated to up to 32% Pd loss after washing. Synchrotron XAS analysis showed that approximately half the Pd atoms were oxidized, corroborating the presence of the Pd-acetate species. These results indicate wet-impregnation-induced metal leaching can occur and be substantial during catalyst preparation.Item Thermal annealing effects on palladium-decorated gold nanoparticle catalysts(Elsevier, 2022) Fang, Yu-Lun; Zhao, Zhun; Heck, Kimberly N.; Pretzer, Lori A.; Guo, Neng; Wu, Tianpin; Zhang, Wenqing; Miller, Jeffrey T.; Wong, Michael S.Palladium metal supported on gold in the form of surface ensembles have enhanced catalytic properties compared to monometallic Pd, as exemplified by Pd-decorated Au nanoparticles (Pd-on-Au NPs) for various room-temperature reactions. Whereas the catalytic properties and nanostructure of Pd-on-Au NPs are not known at higher temperatures, this work focuses on thermal annealing effects on the Pd-on-Au NP nanostructure, bimetal distribution, and room-temperature water-phase trichloroethene hydrodechlorination (TCE HDC) as the model reaction. Analysis of the average coordination environment of Pd and Au atoms through x-ray absorption spectroscopy showed that as-synthesized Pd-on-Au NPs transitioned from a Au core/Pd shell structure to Au-rich core/PdAu surface alloy or PdAu mixed alloy structures depending on the Pd surface coverage (30–150 sc%) and annealing temperature (100–400 °C). The HDC activity strongly correlated with Pd ensemble size, where the as-formed Pd islands exhibited one order of magnitude enhanced activity compared to monometallic Pd. Higher annealing temperatures led to a surface/mixed alloy structure with smaller Pd ensemble size, resulting in lower activity but still ∼3 times more active than monometallic Pd. These results illustrate the importance of catalyst structure on activity and the usefulness of metal-decorated metal catalysts for higher-temperature reactions.