Browsing by Author "Zhang, Shijia"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Using statistical learning to predict interactions between single metal atoms and modified MgO(100) supports(Springer Nature, 2020) Liu, Chun-Yen; Zhang, Shijia; Martinez, Daniel; Li, Meng; Senftle, Thomas P.Metal/oxide interactions mediated by charge transfer influence reactivity and stability in numerous heterogeneous catalysts. In this work, we use density functional theory (DFT) and statistical learning (SL) to derive models for predicting how the adsorption strength of metal atoms on MgO(100) surfaces can be enhanced by modifications of the support. MgO(100) in its pristine form is relatively unreactive, and thus is ideal for examining ways in which its electronic interactions with metals can be enhanced, tuned, and controlled. We find that the charge transfer characteristics of MgO are readily modified either by adsorbates on the surface (e.g., H, OH, F, and NO2) or dopants in the oxide lattice (e.g., Li, Na, B, and Al). We use SL methods (i.e., LASSO, Horseshoe prior, and Dirichlet–Laplace prior) that are trained against DFT data to identify physical descriptors for predicting how the adsorption energy of metal atoms will change in response to support modification. These SL-derived feature selection tools are used to screen through more than one million candidate descriptors that are generated from simple chemical properties of the adsorbed metals, MgO, dopants, and adsorbates. Among the tested SL tools, we demonstrate that Dirichlet–Laplace prior predicts metal adsorption energies on MgO most accurately, while also identifying descriptors that are most transferable to chemically similar oxides, such as CaO, BaO, and ZnO.