Browsing by Author "Zhang, Qingbo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Integrated microheater array for efficient and localized heating of magnetic nanoparticles at microwave frequencies(2025-02-11) Fan, Yingying; Zhang, Qingbo; Zhang, Linlin; Bao, Gang; Chi, Taiyun; Rice University; United States Patent and Trademark OfficeAn microheater array system includes an integrated microheater array configured to generate a localized heat and having a plurality of pixels. Each pixel includes: an inductor; a stacked oscillator configured to generate a magnetic field at microwave frequencies with tunable intensity and frequency; and an electro-thermal loop. The microheater array system may further include a plurality of magnetic nanoparticles (MNPs).Item When function is biological: Discerning how silver nanoparticle structure dictates antimicrobial activity(Cell Press, 2022) Zhang, Qingbo; Hu, Yue; Masterson, Caitlin M.; Jang, Wonhee; Xiao, Zhen; Bohloul, Arash; Garcia-Rojas, Daniel; Puppala, Hema L.; Bennett, George; Colvin, Vicki L.Silver nanomaterials have potent antibacterial properties that are the foundation for their wide commercial use as well as for concerns about their unintended environmental impact. The nanoparticles themselves are relatively biologically inert but they can undergo oxidative dissolution yielding toxic silver ions. A quantitative relationship between silver material structure and dissolution, and thus antimicrobial activity, has yet to be established. Here, this dissolution process and associated biological activity is characterized using uniform nanoparticles with variable dimension, shape, and surface chemistry. From this, a phenomenological model emerges that quantitatively relates material structure to both silver dissolution and microbial toxicity. Shape has the most profound influence on antibacterial activity, and surprisingly, surface coatings the least. These results illustrate how material structure may be optimized for antimicrobial properties and suggest strategies for minimizing silver nanoparticle effects on microbes.