Browsing by Author "Zhan, Hui"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Applications of surface plasmon polaritons in terahertz spectral regime(2010) Zhan, Hui; Mittleman, Daniel M.This thesis presents the experimental work on the applications of surface plasmon polariton (SPP) in terahertz (THz) spectral range. Apertureless near-field optical microscopy (ANSOM) has been widely used to study the localized SPP on various material surfaces. THz ANSOM technique was recently developed to combine the THz time-domain spectroscopy and the ANSOM technique to provide a near-field detection on the localized THz surface waves with improved spatial resolution and signal-noise ratio. We have studied the metal-insulator transition in vanadium dioxide (VO2) thin film using THz ANSOM. We observe a variation of the terahertz amplitude due to the phase transition induced by an applied voltage across the sample. The change of the terahertz signal is related to the abrupt change of the conductivity of the VO2 film at the metal-insulator transition. The subwavelength spatial resolution of this near-field microscopy makes it possible to detect signatures of metallic domains, which exist in the VO2 thin films in the vicinity of the phase transition. We experimentally investigate the propagation of guided waves in finite-width parallel-plate waveguides (PPWGs) in the terahertz spectral range. We observe the propagation of SPPs in this guiding structure, instead of the fundamental transverse electromagnetic (TEM) mode. We find that the two-dimensional (2-D) energy confinement within the finite-width PPWG increases exponentially as the plate separation is reduced. We speculate that edge plasmons play an important role in the energy confinement in this open-structure waveguide. For comparison, the infinite-width PPWGs, the plates of which are much wider than the THz beam size, are also studied with several plate separations. The free-space beam diffraction produces a Gaussian profile along the unconfined direction. The unusual electric field profiles along the vertical direction, perpendicular to the plate are observed. The field enhancement near the metal surfaces are also explained by the SPPs coupled to the metal surfaces. Based on the 2-D energy confinement in the finite-width PPWGs, we design the tapered slot waveguide by slowly tapering the plate width and slot gap. We first study the transverse component of the THz electric field, where a subwavelength 2-D energy confinement is observed. The output spot size strongly depends on the output facet size, where the slot gap and the tip width are in the same scale range. Subwavelength confinement is obtained, corresponding to lambda/4. Further confinement is limited by the spatial resolution of the detecting technique. To overcome this problem, we adapt the THz ASNOM setup to scattering-probe imaging technique, which has been proven to obtain deep subwavelength spatial resolution and great signal-noise ratio. Scattering-probe imaging setup measures the longitudinal component of the electric field of SPPs in the tapered slot waveguides. By slowly tapering the tip width and the slot gap, we squeeze a single-cycle THz pulse down to a size of 10 mum (lambda/260) by 18 mum (lambda/145), a mode area of only 2.6 x 10-5lambda2. We also observe a polarity reversal for the electric field between the guiding region near the upper and lower plates of the waveguide. This polarity flip is similar to that associated with the symmetric plasmon mode of slot waveguides.