Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zaritsky, Assaf"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Live time-lapse dataset ofᅠin vitroᅠwound healing experiments
    (Oxford University Press, 2015) Zaritsky, Assaf; Natan, Sari; Kaplan, Doron; Ben-Jacob, Eshel; Tsarfaty, Ilan
    Background: The wound healing assay is the common method to study collective cell migration in vitro. Computational analyses of live imaging exploit the rich temporal information and significantly improve understanding of complex phenomena that emerge during this mode of collective motility. Publicly available experimental data can allow application of new analyses to promote new discoveries, and assess algorithms’ capabilities to distinguish between different experimental conditions. Findings: A freely-available dataset of 31 time-lapse in vitro wound healing experiments of two cell lines is presented. It consists of six different experimental conditions with 4–6 replicates each, gathered to study the effects of a growth factor on collective cell migration. The raw data is available at ‘The Cell: an Image Library’ repository. This Data Note provides detailed description of the data, intermediately processed data, scripts and experimental validations that have not been reported before and are currently available at GigaDB. This is the first publicly available repository of live collective cell migration data that includes independent replicates for each set of conditions. Conclusions: This dataset has the potential for extensive reuse. Some aspects in the data remain unexplored and can be exploited extensively to reveal new insight. The dataset could also be used to assess the performance of available and new quantification methods by demonstrating phenotypic discriminatory capabilities between the different experimental conditions. It may allow faster and more elaborated, reproducible and effective analyses, which will likely lead to new biological and biophysical discoveries.
  • Loading...
    Thumbnail Image
    Item
    The motility-proliferation-metabolism interplay during metastatic invasion
    (Nature Publishing Group, 2015) Hecht, Inbal; Natan, Sari; Zaritsky, Assaf; Levine, Herbert; Tsarfaty, Ilan; Ben-Jacob, Eshel; Center for Theoretical Biological Physics
    Metastasis is the major cause for cancer patients’ death, and despite all the recent advances in cancer research it is still mostly incurable. Understanding the mechanisms that are involved in the migration of the cells in a complex environment is a key step towards successful anti-metastatic treatment. Using experimental data-based modeling, we focus on the fundamentals of metastatic invasion: motility, invasion, proliferation and metabolism, and study how they may be combined to maximize the cancer’s ability to metastasize. The modeled cells’ performance is measured by the number of cells that succeed in migration in a maze, which mimics the extracellular environment. We show that co-existence of different cell clones in the tumor, as often found in experiments, optimizes the invasive ability in a frequently-changing environment. We study the role of metabolism and stimulation by growth factors, and show that metabolism plays a crucial role in the metastatic process and should therefore be targeted for successful treatment.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892