Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yun, Youngmok"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of a hand-wrist exoskeleton, READAPT, via kinematic analysis of redundant pointing tasks
    (IEEE, 2015) Rose, Chad G.; Sergi, Fabrizio; Yun, Youngmok; Madden, Kaci; Deshpande, Ashish D.; O'Malley, Marcia K.; Mechanical Engineering; Mechatronics and Haptic Interfaces Laboratory
    Training coordinated hand and wrist movement is invaluable during post-neurological injury due to the anatomical, biomechanical, and functional couplings of these joints. This paper presents a novel rehabilitation device for coordinated hand and wrist movement. As a first step towards validating the new device as a measurement tool, the device transparency was assessed through kinematic analysis of a redundant finger pointing task requiring synergistic movement of the wrist and finger joints. The preliminary results of this new methodology showed that wearing the robot affects the kinematic coupling of the wrist and finger for unconstrained pointing tasks. However, further experiments specifying a subset of the solution manifold did not exhibit the same difference between robot and no robot trials. The experiments and analysis form a promising method for the characterization of multi-articular wearable robots as measurement tools in robotic rehabilitation.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892