Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yu, Shengjie"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Electronic Transport on Aligned Carbon Nanotube Assemblies
    (2025-02-14) Yu, Shengjie; Kono, Junichiro
    Individual carbon nanotubes (CNTs) offer high electrical conductivity, tensile strength, and flexibility, but these properties are diminished in randomly oriented structures. Aligned CNT fibers retain good conductivity (up to 10.9 MS/m) but are still inferior to individual CNTs. We have investigated electronic transport phenomena in these fibers through temperature- and magnetic field-dependent measurements, finding that the conductivity decreases with decreasing temperature at low temperatures due to quantum conductance corrections. Using a combination of 3D and 1D weak localization (WL) models, we explained the observed magnetoresistance and discuss their dimensionality in detail. Low-temperature studies on individual CNT bundles showed significant quantum corrections, with WL and universal conductance fluctuations (UCF) providing consistent phase coherence length estimates (tens of nanometers). However, UCF amplitude and magnetic field asymmetry suggest a coherence length scale similar to the few-micron distance between the voltage probes. This study enhances the understanding of electronic transport mechanisms in aligned CNT fibers, essential for improving conductivity for various applications.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892