Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yu, Pingfeng"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bacterial Endospores as Phage Genome Carriers and Protective Shells
    (American Society for Microbiology, 2018) Gabiatti, Naiana; Yu, Pingfeng; Mathieu, Jacques; Lu, Grant W.; Wang, Xifan; Zhang, Hangjun; Soares, Hugo M.; Alvarez, Pedro J.J.
    Bacterial endospores can serve as phage genome protection shells against various environmental stresses to enhance microbial control applications. The genomes of polyvalent lytic Bacillus phages PBSC1 and PBSC2, which infect both B. subtilis subsp. subtilis and B. cereusNRS 248, were incorporated into B. subtilis endospores (without integration into the host chromosome). When PBSC1 and PBSC2 were released from germinating endospores, they significantly inhibited the growth of the targeted opportunistic pathogen B. cereus Optimal endospore entrapment was achieved when phages were introduced to the fast-sporulating prespores at a multiplicity of infection of 1. Longer endospore maturation (48 h versus 24 h) increased both spore yield and efficiency of entrapment. Compared with free phages, spore-protected phage genomes showed significantly higher resistance toward high temperatures (60 to 80°C), extreme pH (pH 2 or pH 12), and copper ions (0.1 to 10 mg/liter). Endospore germination is inducible by low concentrations of l-alanine or by a germinant mixture (l-asparagine, d-glucose, d-fructose, and K+) to trigger the expression, assembly, and consequent release of phage particles within 60 to 90 min. Overall, the superior resiliency of polyvalent phages protected by endospores might enable nonrefrigerated phage storage and enhance phage applications after exposure to adverse environmental conditions.IMPORTANCE: Bacteriophages are being considered for the control of multidrug-resistant and other problematic bacteria in environmental systems. However, the efficacy of phage-based microbial control is limited by infectivity loss during phage delivery and/or storage. Here, we exploit the pseudolysogenic state of phages, which involves incorporation of their genome into bacterial endospores (without integration into the host chromosome), to enhance survival in unfavorable environments. We isolated polyvalent (broad-host-range) phages that efficiently infect both benign and opportunistically pathogenic Bacillusstrains and encapsulated the phage genomes in B. subtilis endospores to significantly improve resistance to various environmental stressors. Encapsulation by spores also significantly enhanced phage genome viability during storage. We also show that endospore germination can be induced on demand with nutrient germinants that trigger the release of active phages. Overall, we demonstrate that encapsulation of polyvalent phage genomes into benign endospores holds great promise for broadening the scope and efficacy of phage biocontrol.
  • Loading...
    Thumbnail Image
    Item
    Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress
    (Springer Nature, 2021) Huang, Dan; Yu, Pingfeng; Ye, Mao; Schwarz, Cory; Jiang, Xin; Alvarez, Pedro J.J.
    Background: Microbe–virus interactions have broad implications on the composition, function, and evolution of microbiomes. Elucidating the effects of environmental stresses on these interactions is critical to identify the ecological function of viral communities and understand microbiome environmental adaptation. Heavy metal-contaminated soils represent a relevant ecosystem to study the interplay between microbes, viruses, and environmental stressors. Results: Metagenomic analysis revealed that Cr pollution adversely altered the abundance, diversity, and composition of viral and bacterial communities. Host–phage linkage based on CRISPR indicated that, in soils with high Cr contamination, the abundance of phages associated with heavy metal-tolerant hosts increased, as did the relative abundance of phages with broad host ranges (identified as host–phage linkages across genera), which would facilitate transfection and broader distribution of heavy metal resistance genes in the bacterial community. Examining variations along the pollutant gradient, enhanced mutualistic phage–bacterium interactions were observed in the face of greater environmental stresses. Specifically, the fractions of lysogens in bacterial communities (identified by integrase genes within bacterial genomes and prophage induction assay by mitomycin-C) were positively correlated with Cr contamination levels. Furthermore, viral genomic analysis demonstrated that lysogenic phages under higher Cr-induced stresses carried more auxiliary metabolic genes regulating microbial heavy metal detoxification. Conclusion: With the intensification of Cr-induced environmental stresses, the composition, replication strategy, and ecological function of the phage community all evolve alongside the bacterial community to adapt to extreme habitats. These result in a transformation of the phage–bacterium interaction from parasitism to mutualism in extreme environments and underscore the influential role of phages in bacterial adaptation to pollution-related stress and in related biogeochemical processes.
  • Loading...
    Thumbnail Image
    Item
    Inhibition of biofouling on reverse osmosis membrane surfaces by germicidal ultraviolet light side-emitting optical fibers
    (Elsevier, 2022) Rho, Hojung; Yu, Pingfeng; Zhao, Zhe; Lee, Chung-Seop; Chon, Kangmin; Perreault, François; Alvarez, Pedro J.J.; Amy, Gary; Westerhoff, Paul; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment
    Biofouling of membrane surfaces poses significant operational challenges and costs for desalination and wastewater reuse applications. Ultraviolet (UV) light can control biofilms while reducing chemical usage and disinfection by-products, but light deliveries to membrane surfaces in spiral wound geometries has been a daunting challenge. Thin and flexible nano-enabled side-emitting optical fibers (SEOFs) are novel light delivery devices that enable disinfection or photocatalytic oxidation by radiating UV light from light-emitting diodes (LEDs). We envision SEOFs as an active membrane spacer to mitigate biofilm formation on reverse osmosis (RO) membranes. A lab-scale RO membrane apparatus equipped with SEOFs allowed comparison of UV-A (photocatalysis-enabled) versus UV-C (direct photolysis disinfection). Compared against systems without any light exposure, systems with UV-C light formed thinner—but denser—biofilms, prevented permeate flux declines due to biofouling, and maintained the highest salt rejection. Results were corroborated by in-situ optical coherence tomography and ex-situ measurements of biofilm growth on the membranes. Transcriptomic analysis showed that UV-C SEOFs down-regulated quorum sensing and surface attachment genes. In contrast, UV-A SEOFs upregulated quorum sensing, surface attachment, and oxidative stress genes, resulting in higher extracellular polymeric substances (EPS) accumulation on membrane surfaces. Overall, SEOFs that deliver a low fluence of UV-C light onto membrane surfaces are a promising non-chemical approach for mitigating biofouling formation on RO membranes.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892