Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Young, Colin Christopher"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Viscoelasticity of Single-Walled Carbon Nanotube Solutions with Tunable Attractive Interactions
    (2012) Young, Colin Christopher; Pasquali, Matteo
    Understanding the microstructure of single walled nanotubes (SWNTs) in solution is an essential step in the development of fluid processing techniques for the creation of multifunctional macroscopic SWNT materials and is also useful in the more fundamental study of rigid rod solutions. In this thesis, the microstructure of SWNT solutions in ClHSO 3 and in mixtures of ClHSO 3 and 102% H 2 SO 4 is studied by investigation of their viscoelastic properties. These results are compared to previous investigations of SWNTs in 102% H 2 SO 4 and in ClHSO 3 at higher concentrations in order to study the effects of concentration and inter-SWNT attractive potential. Attractive interactions between the SWNTs are found to have a strong effect on percolation threshold concentration. A percolation transition is also observed in solutions at a fixed concentration as the solvent strength is decreased. Measurements obtained below the percolation transition are compared to the predictions of existing rigid rod solution models.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892