Browsing by Author "Yazdi, Sadegh"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A room-temperature mid-infrared photodetector for on-chip molecular vibrational spectroscopy(AIP Publishing, 2018) Zheng, Bob; Zhao, Hangqi; Cerjan, Ben; Yazdi, Sadegh; Ringe, Emilie; Nordlander, Peter; Halas, Naomi J.; Laboratory for NanophotonicsInfrared (IR) photodetection is of major scientific and technical interest since virtually all molecules exhibit characteristic vibrational modes in the mid-infrared region of the spectrum, giving rise to molecular spectroscopy and chemical imaging in this wavelength range. High-resolution IR spectroscopies, such as Fourier Transform IR spectroscopy, typically require large, bulky optical measurement systems and expensive photodetector components. Here, we present a high-responsivity photodetector for the mid-IR spectral region which operates at room temperature. Fabricated from silicon and aluminum, the photodetection mechanism is based on free carrier absorption, giving rise to a photoresponse rivalling commercially available cooled IR photodetectors. We demonstrate that infrared spectra of molecules deposited on this detector can be obtained by a direct electrical read-out. This work could pave the way for simple, fully integrated chemical sensors and other applications, such as chemical imaging, which would benefit from the combination of mid-IR detection, room-temperature operation, and ultracompact portability.Item Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals(American Chemical Society, 2017) Agrawal, Ankit; Singh, Ajay; Yazdi, Sadegh; Singh, Amita; Ong, Gary K.; Bustillo, Karen; Johns, Robert W.; Ringe, Emilie; Milliron, Delia J.Doped metal oxides are plasmonic materials that boast both synthetic and postsynthetic spectral tunability. They have already enabled promising smart window and optoelectronic technologies and have been proposed for use in surface enhanced infrared absorption spectroscopy (SEIRA) and sensing applications. Herein, we report the first step toward realization of the former utilizing cubic F and Sn codoped In2O3 nanocrystals (NCs) to couple to the C–H vibration of surface-bound oleate ligands. Electron energy loss spectroscopy is used to map the strong near-field enhancement around these NCs that enables localized surface plasmon resonance (LSPR) coupling between adjacent nanocrystals and LSPR-molecular vibration coupling. Fourier transform infrared spectroscopy measurements and finite element simulations are applied to observe and explain the nature of the coupling phenomena, specifically addressing coupling in mesoscale assembled films. The Fano line shape signatures of LSPR-coupled molecular vibrations are rationalized with two-port temporal coupled mode theory. With this combined theoretical and experimental approach, we describe the influence of coupling strength and relative detuning between the molecular vibration and LSPR on the enhancement factor and further explain the basis of the observed Fano line shape by deconvoluting the combined response of the LSPR and molecular vibration in transmission, absorption and reflection. This study therefore illustrates various factors involved in determining the LSPR–LSPR and LSPR–molecular vibration coupling for metal oxide materials and provides a fundamental basis for the design of sensing or SEIRA substrates.Item Reversible Shape and Plasmon Tuning in Hollow AgAu Nanorods(American Chemical Society, 2016) Yazdi, Sadegh; Daniel, Josée R.; Large, Nicolas; Schatz, George C.; Boudreau, Denis; Ringe, EmilieThe internal structure of hollow AgAu nanorods created by partial galvanic replacement was manipulated reversibly, and its effect on optical properties was mapped with nanometer resolution. Using the electron beam in a scanning transmission electron microscope to create solvated electrons and reactive radicals in an encapsulated solution-filled cavity in the nanorods, Ag ions were reduced nearby the electron beam, reshaping the core of the nanoparticles without affecting the external shape. The changes in plasmon-induced near-field properties were then mapped with electron energy-loss spectroscopy without disturbing the internal structure, and the results are supported by finite-difference time-domain calculations. This reversible shape and near-field control in a hollow nanoparticle actuated by an external stimulus introduces possibilities for applications in reprogrammable sensors, responsive materials, and optical memory units. Moreover, the liquid-filled nanorod cavity offers new opportunities for in situ microscopy of chemical reactions.Item Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms(American Chemical Society, 2016) Leary, Rowan K.; Kumar, Anjli; Straney, Patrick J.; Collins, Sean M.; Yazdi, Sadegh; Dunin-Borkowski, Rafal E.; Midgley, Paul A.; Millstone, Jill E.; Ringe, EmilieCatalytic and optical properties can be coupled by combining different metals into nanoscale architectures where both the shape and composition provide fine-tuning of functionality. Here, discrete, small Pt nanoparticles (diameter = 3 - 6 nm) were grown in linear arrays on Au nanoprisms, and the resulting structures are shown to retain strong localized surface plasmon resonances. Multi-dimensional electron microscopy and spectroscopy techniques (energy dispersive X-ray spectroscopy, electron tomography and electron energy-loss spectroscopy) were used to unravel their local composition, 3D morphology, growth patterns, and optical properties. The composition and tomographic analyses disclose otherwise ambiguous details of the Pt-decorated Au nanoprisms, revealing that both pseudospherical protrusions and dendritic Pt nanoparticles grow on all faces of the nanoprisms (the faceted or occasionally twisted morphologies of which are also revealed), and shed light on the alignment of Pt nanoparticles. The electron energy-loss spectroscopy investigations show that the Au nanoprisms sustain multiple localized surface plasmon resonances despite the presence of pendant Pt nanoparticles. The plasmonic fields at the surface of the nanoprisms indeed extend into the Pt nanoparticles, opening possibilities for combined optical and catalytic applications. These insights pave the way towards comprehensive nano-engineering of multi-functional bimetallic nanostructures, with potential application in plasmon-enhanced catalysis and in-situ monitoring of chemical processes via surface-enhanced spectroscopy.Item Ultrasensitive Plasmonic Platform for Label-Free Detection of Membrane-Associated Species(American Chemical Society, 2016) Bruzas, Ian; Unser, Sarah; Yazdi, Sadegh; Ringe, Emilie; Sagle, LauraLipid membranes and membrane proteins are important biosensing targets, motivating the development of label-free methods with improved sensitivity. Silica-coated metal nanoparticles allow these systems to be combined with supported lipid bilayers for sensing membrane proteins through localized surface plasmon resonance (LSPR). However, the small sensing volume of LSPR makes the thickness of the silica layer critical for performance. Here, we develop a simple, inexpensive, and rapid sol–gel method for preparing thin conformal, continuous silica films and demonstrate its applicability using gold nanodisk arrays with LSPRs in the near-infrared range. Silica layers as thin as ∼5 nm are observed using cross-sectional scanning transmission electron microscopy. The loss in sensitivity due to the thin silica coating was found to be only 16%, and the biosensing capabilities of the substrates were assessed through the binding of cholera toxin B to GM1 lipids. This sensor platform should prove useful in the rapid, multiplexed detection and screening of membrane-associated biological targets.