Browsing by Author "Yan, Wanhong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS)(Optical Society of America, 2017) Song, Fang; Zheng, Chuantao; Yan, Wanhong; Ye, Weilin; Wang, Yiding; Tittel, Frank K.To suppress sensor noise with unknown statistical properties, a novel self-adaptive direct laser absorption spectroscopy (SA-DLAS) technique was proposed by incorporating a recursive, least square (RLS) self-adaptive denoising (SAD) algorithm and a 3291 nm interband cascade laser (ICL) for methane (CH4) detection. Background noise was suppressed by introducing an electrical-domain noise-channel and an expectation-known-based RLS SAD algorithm. Numerical simulations and measurements were carried out to validate the function of the SA-DLAS technique by imposing low-frequency, high-frequency, White-Gaussian and hybrid noise on the ICL scan signal. Sensor calibration, stability test and dynamic response measurement were performed for the SA-DLAS sensor using standard or diluted CH4ᅠsamples. With the intrinsic sensor noise considered only, an Allan deviation of ~43.9 ppbv with a ~6 s averaging time was obtained and it was further decreased to 6.3 ppbv with a ~240 s averaging time, through the use of self-adaptive filtering (SAF). The reported SA-DLAS technique shows enhanced sensitivity compared to a DLAS sensor using a traditional sensing architecture and filtering method. Indoor and outdoor atmospheric CH4measurements were conducted to validate the normal operation of the reported SA-DLAS technique.Item Performance Enhancement of Methane Detection Using a Novel Self-Adaptive Mid-Infrared Absorption Spectroscopy Technique(IEEE, 2018) Song, Fang; Zheng, Chuantao; Yan, Wanhong; Ye, Wei Lin; Zhang, Yu; Wang, Yiding; Tittel, Frank K.An electrical-domain self-adaptive mid-infrared absorption spectroscopy for methane detection based on an interband cascade laser was demonstrated. By adding noise into the laser drive signal, denoising and sensing performances were evaluated for the technique. Experiments were made to study the effects of noise level/type on sensor stability, characterized by Allan deviation. High- and low-frequency noise levels have the same functional variation trend on Allan deviation, which differs from white Gaussian noise. Within a noise level range of 0-125 mV for low- and high-frequency noise and 0-62.5 mV for white Gaussian noise in the mercury-cadmium-telluride detector's output (with a pure signal amplitude of ~300 mV), the sensor stability using self-adaptive denoising was enhanced by a factor of 1.05-20, 1.32-6.25, and 1.15-3.33 times compared to that using no filtering, for the three kinds of noise, respectively. The reported self-adaptive methane sensor system shows enhanced stability compared to the direct laser absorption spectroscopy sensor using traditional sensing architecture and classic filtering method. The sensor was further evaluated through outdoor atmospheric methane measurements using such technique. A second-order self-adaptive direct laser absorption spectroscopy technique was also proposed for noise suppression in both optical and electrical domain as an outlook of the concept of this paper.