Browsing by Author "Xu, Bin"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Application of Hydrogels in Heart Valve Tissue Engineering(Begell House, 2015) Zhang, Xing; Xu, Bin; Puperi, Daniel S.; Wu, Yan; West, Jennifer L.; Grande-Allen, K. Jane; BioengineeringWith an increasing number of patients requiring valve replacements, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve.Item Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering(Elsevier, 2015) Zhang, Xing; Xu, Bin; Puperi, Daniel S.; Yonezawa, Aline L.; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L.; West, Jennifer L.; Grande-Allen, K. Jane; BioengineeringThe development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering.Item Non-volatile magnon transport in a single domain multiferroic(Springer Nature, 2024) Husain, Sajid; Harris, Isaac; Meisenheimer, Peter; Mantri, Sukriti; Li, Xinyan; Ramesh, Maya; Behera, Piush; Taghinejad, Hossein; Kim, Jaegyu; Kavle, Pravin; Zhou, Shiyu; Kim, Tae Yeon; Zhang, Hongrui; Stevenson, Paul; Analytis, James G.; Schlom, Darrell; Salahuddin, Sayeef; Íñiguez-González, Jorge; Xu, Bin; Martin, Lane W.; Caretta, Lucas; Han, Yimo; Bellaiche, Laurent; Yao, Zhi; Ramesh, Ramamoorthy; Rice Advanced Materials InstituteAntiferromagnets have attracted significant attention in the field of magnonics, as promising candidates for ultralow-energy carriers for information transfer for future computing. The role of crystalline orientation distribution on magnon transport has received very little attention. In multiferroics such as BiFeO3 the coupling between antiferromagnetic and polar order imposes yet another boundary condition on spin transport. Thus, understanding the fundamentals of spin transport in such systems requires a single domain, a single crystal. We show that through Lanthanum (La) substitution, a single ferroelectric domain can be engineered with a stable, single-variant spin cycloid, controllable by an electric field. The spin transport in such a single domain displays a strong anisotropy, arising from the underlying spin cycloid lattice. Our work shows a pathway to understanding the fundamental origins of magnon transport in such a single domain multiferroic.