Browsing by Author "Xie, Lijuan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics(Nature Publishing Group, 2015) Xie, Lijuan; Gao, Weilu; Shu, Jie; Ying, Yibin; Kono, JunichiroWe have detected trace amounts of molecules of antibiotics (kanamycin sulfate) dispersed on metasurfaces with terahertz (THz) spectroscopy. Utilizing the extraordinary optical transmission resonance of an array of square-shaped slits on a silicon substrate at ~0.3 THz, we were able to monitor varying concentrations of kanamycin sulfate as low as ~100 picogram/L. In contrast, the lowest detectable concentration of kanamycin sulfate on silicon without any metallic structure was ~1 gram/L. This dramatic ~1010 times enhancement of sensitivity is due to the near-field enhancement of THz electric fields by the metamaterial structure. This result thus demonstrates the power and usefulness of metamaterial-assisted THz spectroscopy in trace molecular detection for biological and chemical sensing as well as for food product quality and safety inspection and control.Item Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes(Springer Nature, 2016) He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M.; Hároz, Erik H.; Doorn, Stephen K.; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M.; Adams, W. Wade; Hauge, Robert H.; Kono, JunichiroThe one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.