Browsing by Author "Wygant, John"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Electric and magnetic radial diffusion coefficients using the Van Allen probes data(Wiley, 2016) Ali, Ashar F.; Malaspina, David M.; Elkington, Scot R.; Jaynes, Allison N.; Chan, Anthony A.; Wygant, John; Kletzing, Craig A.ULF waves are a common occurrence in the inner magnetosphere and they contribute to particle motion, significantly, at times. We used the magnetic and the electric field data from the Electric and Magnetic Field Instrument Suite and Integrated Sciences (EMFISIS) and the Electric Field and Waves instruments (EFW) on board the Van Allen Probes to estimate the ULF wave power in the compressional component of the magnetic field and the azimuthal component of the electric field, respectively. Using L∗, Kp, and magnetic local time (MLT) as parameters, we conclude that the noon sector contains higher ULF Pc-5 wave power compared with the other MLT sectors. The dawn, dusk, and midnight sectors have no statistically significant difference between them. The drift-averaged power spectral densities are used to derive the magnetic and the electric component of the radial diffusion coefficient. Both components exhibit little to no energy dependence, resulting in simple analytic models for both components. More importantly, the electric component is larger than the magnetic component by one to two orders of magnitude for almost all L∗ and Kp; thus, the electric field perturbations are more effective in driving radial diffusion of charged particles in the inner magnetosphere. We also present a comparison of the Van Allen Probes radial diffusion coefficients, including the error estimates, with some of the previous published results. This allows us to gauge the large amount of uncertainty present in such estimates.Item Testing the Organization of Lower-Band Whistler-Mode Chorus Wave Properties by Plasmapause Location(Wiley, 2021) Malaspina, David M.; Jaynes, Allison N.; Elkington, Scot; Chan, Anthony; Hospodarsky, George; Wygant, JohnLower-band whistler-mode chorus waves are important to the dynamics of Earth's radiation belts, playing a key role in accelerating seed population electrons (hundreds of keV) to relativistic (>1 MeV) energies, and in scattering electrons such that they precipitate into the atmosphere. When constructing and using statistical models of lower-band whistler-mode chorus wave power, it is commonly assumed that wave power is spatially distributed with respect to magnetic L-shell. At the same time, these waves are known to drop in power at the plasmapause, a cold plasma boundary which is dynamic in time and space relative to L-shell. This study organizes wave power and propagation direction data with respect to distance from the plasmapause location to evaluate what role the location of the plasmapause may play in defining the spatial distribution of lower-band whistler-mode chorus wave power. It is found that characteristics of the statistical spatial distribution of equatorial lower-band whistler-mode chorus are determined by L-shell and are largely independent of plasmapause location. The primary physical importance of the plasmapause is to act as an Earthward boundary to lower-band whistler-mode chorus wave activity. This behavior is consistent with an equatorial lower-band whistler-mode chorus wave power spatial distribution that follows the L-shell organization of the particles driving wave growth.Item Van Allen Probes Observations of Second Harmonic Poloidal Standing Alfvén Waves(Wiley, 2018) Takahashi, Kazue; Oimatsu, Satoshi; Nosé, Masahito; Min, Kyungguk; Claudepierre, Seth G.; Chan, Anthony; Wygant, John; Kim, HyominLong-lasting second-harmonic poloidal standing Alfvén waves (P2 waves) were observed by the twin Van Allen Probes (Radiation Belt Storm Probes, or RBSP) spacecraft in the noon sector of the plasmasphere, when the spacecraft were close to the magnetic equator and had a small azimuthal separation. Oscillations of proton fluxes at the wave frequency (∼10 mHz) were also observed in the energy (W) range 50–300 keV. Using the unique RBSP orbital configuration, we determined the phase delay of magnetic field perturbations between the spacecraft with a 2nπ ambiguity. We then used finite gyroradius effects seen in the proton flux oscillations to remove the ambiguity and found that the waves were propagating westward with an azimuthal wave number (m) of ∼−200. The phase of the proton flux oscillations relative to the radial component of the wave magnetic field progresses with W, crossing 0 (northward moving protons) or 180° (southward moving protons) at W ∼ 120 keV. This feature is explained by drift-bounce resonance (mωd ∼ ωb) of ∼120 keV protons with the waves, where ωd and ωb are the proton drift and bounce frequencies. At lower energies, the proton phase space density ( ) exhibits a bump-on-tail structure with occurring in the 1–10 keV energy range. This is unstable and can excite P2 waves through bounce resonance (ω ∼ ωb), where ω is the wave frequency.