Browsing by Author "Wolf, R.A."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Anharmonic oscillatory flow braking in the Earth's magnetotail(Wiley, 2015) Panov, E.V.; Wolf, R.A.; Kubyshkina, M.V.; Nakamura, R.; Baumjohann, W.Plasma sheet bursty bulk flows often oscillate around their equilibrium position at about 10 REdowntail. The radial magnetic field, pressure, and flux tube volume profiles usually behave differently earthward and tailward of this position. Using data from five Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes, we reconstruct these profiles with the help of an empirical model and apply thin filament theory to show that the oscillatory flow braking can occur in an asymmetric potential. Thus, the thin filament oscillations appear to be anharmonic, with a power spectrum exhibiting peaks at both the fundamental frequency and the first harmonic. Such anharmonic oscillatory braking can explain the presence of the first harmonic in Pi2 pulsations (frequency doubling), which are simultaneously observed by magnetometers on the ground near the conjugate THEMIS footprints.Item Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams(Wiley, 2016) Califf, S.; Li, X.; Wolf, R.A.; Zhao, H.; Jaynes, A.N.; Wilder, F.D.; Malaspina, D.M.; Redmon, R.The subauroral polarization stream (SAPS) is an important magnetosphere-ionosphere (MI) coupling phenomenon that impacts a range of particle populations in the inner magnetosphere. SAPS studies often emphasize ionospheric signatures of fast westward flows, but the equatorial magnetosphere is also affected through strong radial electric fields in the dusk sector. This study focuses on a period of steady southward interplanetary magnetic field (IMF) during the 29 June 2013 geomagnetic storm where the Van Allen Probes observe a region of intense electric fields near the plasmapause over multiple consecutive outbound duskside passes. We show that the large-amplitude electric fields near the equatorial plane are consistent with SAPS by investigating the relationship between plasma sheet ion and electron boundaries, associated field-aligned currents, and the spatial location of the electric fields. By incorporating high-inclination DMSP data we demonstrate the spatial and temporal variability of the SAPS region, and we suggest that discrete, earthward propagating injections are driving the observed strong electric fields at low L shells in the equatorial magnetosphere. We also show the relationship between SAPS and plasmasphere erosion, as well as a possible correlation with flux enhancements for 100s keV electrons.Item Large-scale current systems and ground magnetic disturbance during deep substorm injections(American Geophysical Union, 2012) Yang, J.; Toffoletto, F.R.; Wolf, R.A.; Sazykin, S.; Ontiveros, P.A.; Weygand, J.M.We present a detailed analysis of the large-scale current systems and their effects on the ground magnetic field disturbance for an idealized substorm event simulated with the equilibrium version of the Rice Convection Model. The objective of this study is to evaluate how well the bubble-injection picture can account for some classic features of the substorm expansion phase. The entropy depletion inside the bubble is intentionally designed to be so severe that it can penetrate deep into geosynchronous orbit. The results are summarized as follows: (1) Both the region-1-sense and region-2-sense field-aligned currents (FACs) intensify substantially. The former resembles the substorm current wedge and flows along the eastern and western edges of the bubble. The latter is connected to the enhanced partial ring current in the magnetosphere associated with a dipolarization front earthward of the bubble. In the ionosphere, these two pairs of FACs are mostly interconnected via Pedersen currents. (2) The horizontal ionospheric currents show a significant westward electrojet peaked at the equatorward edge of the footprint of the bubble. The estimated ground magnetic disturbance is consistent with the typical features at various locations relative to the center of the westward electrojet. (3) A prominent Harang-reversal-like boundary is seen in both ground DH disturbance and plasma flow pattern, appearing in the westward portion of the equatorward edge of the bubble footprint, with a latitudinal extent of 5 and a longitudinal extent of the half width of the bubble. (4) The dramatic dipolarization inside the bubble causes the ionospheric map of the inner plasma sheet to exhibit a bulge-like structure, which may be related to auroral poleward expansion. (5) The remarkable appearance of the westward electrojet, Harang-reversal-like boundary and poleward expansion starts when the bubble reaches the magnetic transition region from tail-like to dipole-like configuration. We also estimate the horizontal and vertical currents using magnetograms at tens of ground stations for a deep injection substorm event occurred on April 9, 2008, resulting in a picture that is qualitatively consistent with the simulation. Based on the simulations and the observations, an overall picture of the ionospheric dynamics and its magnetospheric drivers during deep bubble injections is obtained.Item Statistical properties of substorm auroral onset beads/rays(Wiley, 2016) Nishimura, Y.; Yang, J.; Pritchett, P.L.; Coroniti, F.V.; Donovan, E.F.; Lyons, L.R.; Wolf, R.A.; Angelopoulos, V.; Mende, S.B.Auroral substorms are often associated with optical ray or bead structures during initial brightening (substorm auroral onset waves). Occurrence probabilities and properties of substorm onset waves have been characterized using 112 substorm events identified in Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imager data and compared to Rice Convection Model–Equilibrium (RCM-E) and kinetic instability properties. All substorm onsets were found to be associated with optical waves, and thus, optical waves are a common feature of substorm onset. Eastward propagating wave events are more frequent than westward propagating wave events and tend to occur during lower-latitude substorms (stronger solar wind driving). The wave propagation directions are organized by orientation of initial brightening arcs. We also identified notable differences in wave propagation speed, wavelength (wave number), period, and duration between westward and eastward propagating waves. In contrast, the wave growth rate does not depend on the propagation direction or substorm strength but is inversely proportional to the wave duration. This suggests that the waves evolve to poleward expansion at a certain intensity threshold and that the wave properties do not directly relate to substorm strengths. However, waves are still important for mediating the transition between the substorm growth phase and poleward expansion. The relation to arc orientation can be explained by magnetotail structures in the RCM-E, indicating that substorm onset location relative to the pressure peak determines the wave propagation direction. The measured wave properties agree well with kinetic ballooning interchange instability, while cross-field current instability and electromagnetic ion cyclotron instability give much larger propagation speed and smaller wave period.Item “Trunk-like” heavy ion structures observed by the Van Allen Probes(Wiley, 2015) Zhang, J.-C.; Kistler, L.M.; Spence, H.E.; Wolf, R.A.; Reeves, G.; Skoug, R.; Funsten, H.; Larsen, B.A.; Niehof, J.T.; MacDonald, E.A.; Friedel, R.; Ferradas, C.P.; Luo, H.Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report “trunk-like” ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6–2.6, magnetic local time (MLT) = 9.1–10.5, and magnetic latitude (MLAT) = −2.4–0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are energy = 4.5–0.7 keV, L = 3.6–2.5, MLT = 9.1–10.7, and MLAT = −2.4–0.4°. Results from backward ion drift path tracings indicate that the trunks are likely due to (1) a gap in the nightside ion source or (2) greatly enhanced impulsive electric fields associated with elevated geomagnetic activity. Different ion loss lifetimes cause the trunks to differ among ion species.