Browsing by Author "Wolf, R. A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Buoyancy Modes in a Low Entropy Bubble(Wiley, 2024) Toffoletto, F. R.; Wolf, R. A.; Derr, J.In the nightside region of Earth's magnetosphere, braking oscillations or buoyancy modes have been associated with the occurrence of low entropy bubbles. These bubbles form in the plasma sheet, particularly during geomagnetically disturbed times, and because of interchange, move rapidly earthward and may eventually come to rest in the inner plasma sheet or inner magnetosphere. Upon arrival, they often exhibit damped oscillations with periods of a few minutes and are associated with Pi2 pulsations. Previously we used the thin filament approximation to compare the frequencies and modes of buoyancy waves using magnetohydrodynamic (MHD) ballooning and classic interchange theory. Interchange oscillations differ from the more general MHD oscillations by assuming constant pressure along a magnetic field line. It was determined that MHD ballooning and interchange modes are similar for plasma sheet field lines but differ for field lines that map to the inner magnetosphere. This suggested that the classic interchange formulation was only valid in the plasma sheet. This paper tests the hypothesis that the agreement between MHD ballooning and classic interchange could be restored inside a bubble. We create a small region of entropy depletion in the magnetotail and compare the buoyancy mode properties. At some locations inside the bubble, the MHD ballooning buoyancy modes resemble interchange modes but with lower frequencies than those of the unperturbed background. Unstable modes are found on the earthward edge of the bubble, while at the tailward edge, MHD ballooning predicts a slow mode wave solution not seen in the pure interchange solution.Item Implementation of an Asymmetric Internal Field in the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) Model(Wiley, 2024) Fok, M.-C.; Wolf, R. A.; Ferradas, C. P.; Kang, S.-B.; Glocer, A.; Buzulukova, N. Y.; Ma, Q.; Welling, D. T.A Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model has been developed to study the dynamics of the cold plasmasphere and the energetic plasmas in the inner magnetosphere, as well as their couplings with each other and with the ionosphere. The CIMI model is able to predict the cold plasma density and energetic electron and ion fluxes in geospace. Furthermore, CIMI is capable of predicting the Region 2 currents, penetration electric field, electron and ion precipitation and magnetospheric heat flux into the ionosphere. The CIMI model includes a realistic magnetic field configuration with a combination of an internal field and an external field imposed by the interaction of the solar wind with the magnetosphere. The internal field has previously been assumed to be a dipole. Recently, the International Geomagnetic Reference Field (IGRF) has been implemented. This new capability enables studies of north-south and longitudinal dependences in particle precipitation and heat flux, as well as the corresponding asymmetries in ionospheric and thermospheric responses. In this paper, we will briefly review the CIMI equations and model output. Then we will describe the new implementation of the IGRF model into CIMI and how to estimate the north-south asymmetry in precipitating fluxes from the differences in field strength between magnetic conjugate points. The inclusion of a realistic internal field leads CIMI into a better position to couple with sophisticated ionosphere-thermosphere models, most of which are using the IGRF model.