Browsing by Author "Wiesner, Mark Robert"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chemical control over ceramic porosity using carboxylate-alumoxanes(2005-08-30) Barron, Andrew R.; Bailey, Diane Amy; Wiesner, Mark Robert; Jones, Christopher Daniel; Callender, Rhonda Lynn; Rice University; United States Patent and Trademark OfficeThis invention relates generally to a method for controlling the pore size, pore size distribution and porosity of aluminum-oxide based ceramics through the choice of substituents on carboxylate-alumoxanes and aluminum-oxide nanoparticles. The method allows for the formation of intra-granular pores in the nanometer range to be created in alumina and aluminum oxide ceramic bodies. The control over pore size and pore size distribution is accomplished through the use of different chemical substituents on the carboxylate-alumoxanes and aluminum-oxide nanoparticles. The size and distribution of pores within the alumina-oxide ceramic are dependent on the identity of the carboxylate substituents. In particular the formation of intra-versus inter-granular porosity is dependent on the identity of the carboxylate substituents. The invention also provides methods for the manufacture of ceramic coatings on ceramic and carbon fibers for composite applications and ceramic membranes with nanometer sized pores. The pore size, pore size distribution and porosity, and hence the strength, permeability and surface adhesion, of the ceramic coating is controlled by the choice of substituent on the carboxylate-alumoxane. Thermolysis of self supporting spun layers of the carboxylate-alumoxanes results in disks of alumina with controlled pore size, pore size distribution and porosity. In an alternative method a porous substrate is dipped or coated with a solution of the carboxylate-alumoxane, followed by thermolysis to produce a composite membrane.Item Organic acid-Fe-OOH (ferroxane) particles and ferroxane-derived ceramics and ceramic membranes(2004-08-03) Rose, Jerome; Wiesner, Mark Robert; Barron, Andrew R.; Rice University; United States Patent and Trademark OfficeThe present invention relates to ferroxanes and a method of making wherein a ferroxane may be defined by the general formula [Fe(O)x(OH)y(O2CR)z]n wherein x, y and z may be any integer or fraction such that 2x+y+z=3 and n may be any integer. The ferroxanes may be doped with at least one other element other than iron. The present invention further relates to a ceramic made from the ferroxanes of the present invention and a method of making. The present invention still further relates to supported and unsupported membranes made from the ceramic of the present invention.