Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wen, Xiewen"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Carrier transfer dynamics between atomic layers in Van Der-Waals heterostructures probed by ultrafast spectroscopies
    (2017-10-30) Wen, Xiewen; Lou, Jun; Ajayan, Pulickel
    In the past decade, inspired by the discovery and of graphene, two dimensional (2D) materials which only consist of a single layer of atoms have attracted attention of scientists. A series of 2D materials including semiconducting transition metal dichalcogenides, black Phosphors, Silicene, insulating h-BN, and a number of metallic and semi-metallic materials have been synthesized and studied. Many novel physical phenomena and unique applications have been explored. Based on the rich 2D materials library, in recent years, a new sort of materials – Van der Waals (VDW) heterostructure has been created and investigated, unlike conventional semiconductor heterostructures, VDW Heterostructures do not require lattice matching and complicated growth, and they rely on VDW forces between 2D materials so they can be fabricated via artificial stacking, however they can exhibit great deal of phenomena and applications which conventional heterostructures can or cannot realize. Now people tend to believe band structures of individual layers experienced none to slight change in the VDW Heterostructures, so the charge transfers between layers become the crucial factors determining the properties of the VDW Heterostructures. Microscopies, electronics and spectroscopies are main means of studying interlayer interactions, in this thesis, we creatively utilized microscopic optical pump, mid-IR probe ultrafast spectroscopies to reveal the charge transfer dynamics of several VDW Heterostructure systems with different band alignments, include MoS2/WS2, MoS2/MoSe2, MoSe2/Graphene, MoS2/MoSe2/Graphene with different stacking orders, and we observed the charge transfer dynamics and the formation and extinction of interlayer excitons in VDW Heterostructures, a series of novel physical phenomena have been discovered experimentally. And by studying plasmonics-2D material and VDW Heterostructures systems, hot electron injection pathways were clearly revealed for the first time. The work in this thesis not only clarify some controversial opinions of the newly emerging VDW Heterostructures fields but also provide significant experimental evidence for future research.
  • Loading...
    Thumbnail Image
    Item
    Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots
    (AAAS, 2017) Wang, Yan; Liu, Yang; Zhang, Jianfang; Wu, Jingjie; Xu, Hui; Wen, Xiewen; Zhang, Xiang; Tiwary, Chandra Sekhar; Yang, Wei; Vajtai, Robert; Zhang, Yong; Chopra, Nitin; Odeh, Ihab Nizar; Wu, Yucheng; Ajayan, Pulickel M.
    Atomically thin quantum dots from layered materials promise new science and applications, but their scalable synthesis and separation have been challenging. We demonstrate a universal approach for the preparation of quantum dots from a series of materials, such as graphite, MoS2, WS2, h-BN, TiS2, NbS2, Bi2Se3, MoTe2, Sb2Te3, etc., using a cryo-mediated liquid-phase exfoliation and fracturing process. The method relies on liquid nitrogen pretreatment of bulk layered materials before exfoliation and breakdown into atomically thin two-dimensional quantum dots of few-nanometer lateral dimensions, exhibiting size-confined optical properties. This process is efficient for a variety of common solvents with a wide range of surface tension parameters and eliminates the use of surfactants, resulting in pristine quantum dots without surfactant covering or chemical modification.
  • Loading...
    Thumbnail Image
    Item
    Electron-phonon interactions in MoS2ᅠprobed with ultrafast two-dimensional visible/far-infrared spectroscopy
    (AIP Publishing LLC., 2015) Guo, Xunmin; Chen, Hailong; Wen, Xiewen; Zheng, Junrong
    An ultrafast two-dimensional visible/far-IR spectroscopy based on the IR/THz air biased coherent detection method and scanning the excitation frequencies is developed. The method allows the responses in the far-IR region caused by various electronic excitations in molecular or material systems to be observed in real time. Using the technique, the relaxation dynamics of the photo-excited carriers and electron/phonon coupling in bulk MoS2 are investigated. It is found that the photo-generation of excited carriers occurs within two hundred fs and the relaxation of the carriers is tens of ps. The electron-phonon coupling between the excitations of electrons and the phonon mode E1u of MoS2 is also directly observed. The electron excitation shifts the frequency of the phonon mode 9 cm−1 higher, resulting in an absorption peak at 391 cm−1 and a bleaching peak at 382 cm−1. The frequency shift diminishes with the relaxation of the carriers.
  • Loading...
    Thumbnail Image
    Item
    Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots
    (National Academy of Sciences, 2017) Yan, Zheng; Han, Mengdi; Shi, Yan; Badea, Adina; Yang, Yiyuan; Kulkarni, Ashish; Hanson, Erik; Kandel, Mikhail E.; Wen, Xiewen; Zhang, Fan; Luo, Yiyue; Lin, Qing; Zhang, Hang; Guo, Xiaogang; Huang, Yuming; Nan, Kewang; Jia, Shuai; Oraham, Aaron W.; Mevis, Molly B.; Lim, Jaeman; Guo, Xuelin; Gao, Mingye; Ryu, Woomi; Yu, Ki Jun; Nicolau, Bruno G.; Petronico, Aaron; Rubakhin, Stanislav S.; Lou, Jun; Ajayan, Pulickel M.; Thornton, Katsuyo; Popescu, Gabriel; Fang, Daining; Sweedler, Jonathan V.; Braun, Paul V.; Zhang, Haixia; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
    Exploiting advanced 3D designs in micro/nanomanufacturing inspires potential applications in various fields including biomedical engineering, metamaterials, electronics, electromechanical components, and many others. The results presented here provide enabling concepts in an area of broad, current interest to the materials community––strategies for forming sophisticated 3D micro/nanostructures and means for using them in guiding the growth of synthetic materials and biological systems. These ideas offer qualitatively differentiated capabilities compared with those available from more traditional methodologies in 3D printing, multiphoton lithography, and stress-induced bending––the result enables access to both active and passive 3D mesostructures in state-of-the-art materials, as freestanding systems or integrated with nearly any type of supporting substrate.
  • Loading...
    Thumbnail Image
    Item
    Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2ᅠheterostructures
    (Springer Nature, 2016) Chen, Hailong; Wen, Xiewen; Zhang, Jing; Wu, Tianmin; Gong, Yongji; Zhang, Xiang; Yuan, Jiangtan; Yi, Chongyue; Lou, Jun; Ajayan, Pulickel M.; Zhuang, Wei; Zhang, Guangyu; Zheng, Junrong
    Van der Waals heterostructures composed of two-dimensional transition-metal dichalcogenides layers have recently emerged as a new family of materials, with great potential for atomically thin opto-electronic and photovoltaic applications. It is puzzling, however, that the photocurrent is yielded so efficiently in these structures, despite the apparent momentum mismatch between the intralayer/interlayer excitons during the charge transfer, as well as the tightly bound nature of the excitons in 2D geometry. Using the energy-state-resolved ultrafast visible/infrared microspectroscopy, we herein obtain unambiguous experimental evidence of the charge transfer intermediate state with excess energy, during the transition from an intralayer exciton to an interlayer exciton at the interface of a WS2/MoS2ᅠheterostructure, and free carriers moving across the interface much faster than recombining into the intralayer excitons. The observations therefore explain how the remarkable charge transfer rate and photocurrent generation are achieved even with the aforementioned momentum mismatch and excitonic localization in 2D heterostructures and devices.
  • Loading...
    Thumbnail Image
    Item
    Ultrafast probes of electron–hole transitions between two atomic layers
    (Springer Nature, 2018) Wen, Xiewen; Chen, Hailong; Wu, Tianmin; Yu, Zhihao; Yang, Qirong; Deng, Jingwen; Liu, Zhengtang; Guo, Xin; Guan, Jianxin; Zhang, Xiang; Gong, Yongji; Yuan, Jiangtan; Zhang, Zhuhua; Yi, Chongyue; Guo, Xuefeng; Ajayan, Pulickel M.; Zhuang, Wei; Liu, Zhirong; Lou, Jun; Zheng, Junrong
    Phase transitions of electron-hole pairs on semiconductor/conductor interfaces determine fundamental properties of optoelectronics. To investigate interfacial dynamical transitions of charged quasiparticles, however, remains a grand challenge. By employing ultrafast mid-infrared microspectroscopic probes to detect excitonic internal quantum transitions and two-dimensional atomic device fabrications, we are able to directly monitor the interplay between free carriers and insulating interlayer excitons between two atomic layers. Our observations reveal unexpected ultrafast formation of tightly bound interlayer excitons between conducting graphene and semiconducting MoSe2. The result suggests carriers in the doped graphene are no longer massless, and an effective mass as small as one percent of free electron mass is sufficient to confine carriers within a 2D hetero space with energy 10 times larger than the room-temperature thermal energy. The interlayer excitons arise within 1 ps. Their formation effectively blocks charge recombination and improves charge separation efficiency for more than one order of magnitude.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892