Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Wellington, Scott"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Experimental study of the effect of commercial dispersants on the precipitation, aggregation and deposition of asphaltenes
    (2015-11-30) Melendez Alvarez, Ariana A; Vargas, Francisco M.; Biswal, Sibani L; Verduzco, Rafael; Wellington, Scott
    Asphaltene precipitation and subsequent deposition is a potential flow assurance problem for the oil industry nowadays. Moreover, because oil production is moving to more difficult production environments – e.g. deeper waters – or is focusing on extracting residual oil using enhanced oil recovery techniques, the significant changes of pressure, temperature and/or composition can aggravate asphaltene deposition problems. One of the most common strategies to prevent or at least reduce asphaltene deposition is the utilization of chemical additives. However, there are still several unresolved challenges associated with the utilization of these chemicals: First, the experimental conditions and results obtained in the lab are not always consistent with field observations. Also, in some cases these chemical additives seem to worsen the deposition problem in the field. Therefore, there is a clear need to revisit the commercial techniques used to test the performance of asphaltene inhibitors and to provide a better interpretation of the results obtained. In this work, a technique based on NIR spectroscopy is presented to evaluate the performance of three commercial asphaltene dispersants. The results are also validated using a digital optical microscope. This technique is faster and more reproducible compared to available methods such as Asphaltene Dispersion Test (ADT) and Solid Detection System (SDS). Also, unlike the ADT test, the proposed method can evaluate the performance of the dispersants in a wide range of temperatures and compositions. The chemical additive dosage, aging time and temperature effect on asphaltene aggregation process are also discussed in this manuscript. A new system to study asphaltene deposition on metal surfaces that offers advantages over capillary systems was developed. This new apparatus is based on a column packed with carbon steel spheres. The current version of this device operates at ambient pressure and has potential for the fabrication of a high-pressure system in the near future. The work presented in this dissertation will contribute to a better understanding of the variables that affect the performance of asphaltene dispersants, and the true effect these chemicals have on the complex multi-step mechanism of asphaltene precipitation, aggregation and deposition.
  • Loading...
    Thumbnail Image
    Item
    Method for decomposing asphaltene using a supported catalyst
    (2020-12-29) Pradhan, Sivaram; Wellington, Scott; Shammai, Houman; Wong, Michael; Rice University; Baker Hughes, a GE company, LLC; United States Patent and Trademark Office
    Asphaltene produced during the production of hydrocarbons in an underground reservoir may be reduced and decomposed by introducing into the underground reservoir a fluid having a catalyst of from about 3 to about 7% Ni with a magnesium oxide support or a catalyst of from about 15 to about 25% tungsten oxide with a zirconium oxide support or a mixture thereof. The viscosity of heavy oil within the underground reservoir is reduced in the presence of the catalyst.
  • Loading...
    Thumbnail Image
    Item
    Viscosity reduction of crude oil through structure determination of asphaltene molecule
    (2019-05-14) Verma, Manjusha; Venkataraman, Pradeep; Pradhan, Sivaram; Shammai, Houman Michael; Billups, Wilbur Edward; Wellington, Scott; Rice University; NextStream Heavy Oil, LLC; United States Patent and Trademark Office
    Asphaltene may be effectively broken into smaller molecules by first elucidating the structure of the asphaltene and then developing a catalyst system based on the elucidated structure. The structure may be determined based on a series of analytical techniques including NMR, FTIR, Raman spectroscopy, XPS, and LDI. The most probable structure is determined using computational methods based on quantum mechanics and classical molecular dynamics and the catalyst system is developed for the most probable structure.
  • Loading...
    Thumbnail Image
    Item
    Viscosity reduction of crude oil through structure determination of asphaltene molecule
    (2021-04-20) Verma, Manjusha; Venkataraman, Pradeep; Pradhan, Sivaram; Shammai, Houman Michael; Billups, Wilbur Edward; Wellington, Scott; Rice University; NextStream Heavy Oil, LLC; United States Patent and Trademark Office
    Asphaltene may be effectively broken into smaller molecules by first elucidating the structure of the asphaltene and then developing a catalyst system based on the elucidated structure. The structure may be determined based on a series of analytical techniques including NMR, FTIR, Raman spectroscopy, XPS, and LDI. The most probable structure is determined using computational methods based on quantum mechanics and classical molecular dynamics and the catalyst system is developed for the most probable structure.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892