Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Weber, Reed"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    General neural network approach to compressive feature extraction
    (Optical Society of America, 2021) Giljum, Anthony; Giljum, Anthony; Liu, Weidi; Liu, Weidi; Li, Le; Weber, Reed; Kelly, Kevin F.
    Computer vision with a single-pixel camera is currently limited by a trade-off between reconstruction capability and image classification accuracy. If random projections are used to sample the scene, then reconstruction is possible but classification accuracy suffers, especially in cases with significant background signal. If data-driven projections are used, then classification accuracy improves and the effect of the background is diminished, but image recovery is not possible. Here, we employ a shallow neural network to nonlinearly convert from measurements acquired with random patterns to measurements acquired with data-driven patterns. The results demonstrate that this improves classification accuracy while still allowing for full reconstruction.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892