Browsing by Author "Watson, Brendan M."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Biodegradable, phosphate-containing, dual-gelling macromers for cellular delivery in bone tissue engineering(Elsevier, 2015) Watson, Brendan M.; Vo, Tiffany N.; Tatara, Alexander M.; Shah, Sarita R.; Scott, David W.; Engel, Paul S.; Mikos, Antonios G.Injectable, biodegradable, dual-gelling macromer solutions were used to encapsulate mesenchymal stem cells (MSCs) within stable hydrogels when elevated to physiologic temperature. Pendant phosphate groups were incorporated in the N-isopropyl acrylamide-based macromers to improve biointegration and facilitate hydrogel degradation. The MSCs were shown to survive the encapsulation process, and live cells were detected within the hydrogels for up to 28 days inᅠvitro. Cell-laden hydrogels were shown to undergo significant mineralization in osteogenic medium. Cell-laden and acellular hydrogels were implanted into a critical-size rat cranial defect for 4 and 12 weeks. Both cell-laden and acellular hydrogels were shown to degrade inᅠvivo and help to facilitate bone growth into the defect. Improved bone bridging of the defect was seen with the incorporation of cells, as well as with higher phosphate content of the macromer. Furthermore, direct bone-to-hydrogel contact was observed in the majority of implants, which is not commonly seen in this model. The ability of these macromers to deliver stem cells while forming in situ and subsequently degrade while facilitating bone ingrowth into the defect makes this class of macromers a promising material for craniofacial bone tissue engineering.Item Building Bridges: Leveraging Interdisciplinary Collaborations in the Development of Biomaterials to Meet Clinical Needs(Wiley, 2012) Fong, Eliza L.S.; Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.Our laboratory at Rice University has forged numerous collaborations with clinicians and basic scientists over the years to advance the development of novel biomaterials and the modification of existing materials to meet clinical needs. This review highlights collaborative advances in biomaterials research from our laboratory in the areas of scaffold development, drug delivery, and gene therapy, especially as related to applications in bone and cartilage tissue engineering.Item Evaluation of antibiotic releasing porous polymethylmethacrylate space maintainers in an infected composite tissue defect model(Elsevier, 2013-11) Spicer, Patrick P.; Shah, Sarita R.; Henslee, Allan M.; Watson, Brendan M.; Kinard, Lucas A.; Kretlow, James D.; Bevil, Kristin; Kattchee, Lauren; Bennett, George N.; Demian, Nagi M.; Mende, Katrin; Murray, Clinton K.; Jansen, John A.; Wong, Mark E.; Mikos, Antonios G.; Kasper, F.KurtisThis study evaluated the in vitro and in vivo performance of antibiotic-releasing porous polymethylmethacrylate (PMMA)-based space maintainers comprising a gelatin hydrogel porogen and a poly(DL-lactic-co-glycolic acid) (PLGA) particulate carrier for antibiotic delivery. Colistin was released in vitro from either gelatin or PLGA microparticle loaded PMMA constructs, with gelatin-loaded constructs releasing colistin over approximately 7 days and PLGA microparticle-loaded constructs releasing colistin up to 8 weeks. Three formulations with either a burst release or extended release in different doses were tested in a rabbit mandibular defect inoculated with Acinetobacter baumannii (2 × 107 colony forming units/mL). In addition, one material control that released antibiotic but was not inoculated with A. baumannii was tested. A. baumannii was not detectable in any animal after 12 weeks by culture of the defect, saliva, or blood. Defects with high-dose, extended-release implants had greater soft tissue healing compared to defects with burst release implants, with 8 out of 10 animals showing healed mucosae compared to 2 out of 10 with healed mucosae, respectively. Extended release of locally delivered colistin via a PLGA microparticle carrier improved soft tissue healing over the implants compared to burst release of colistin from a gelatin carrier.Item In vitroᅠandᅠin vivoᅠevaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering(Elsevier, 2015) Vo, Tiffany N.; Ekenseair, Adam K.; Spicer, Patrick P.; Watson, Brendan M.; Tzouanas, Stephanie N.; Roh, Terrence T.; Mikos, Antonios G.In this study, we investigated the mineralization capacity and biocompatibility of injectable, dual-gelling hydrogels in a rat cranial defect as a function of hydrogel hydrophobicity from either the copolymerization of a hydrolyzable lactone ring or the hydrogel polymer content. The hydrogel system comprised a poly(N-isopropylacrylamide)-based thermogelling macromer (TGM) and a polyamidoamine crosslinker. The thermogelling macromer was copolymerized with (TGM/DBA) or without (TGM) a dimethyl-γ-butyrolactone acrylate (DBA)-containing lactone ring that modulated the lower critical solution temperature and thus, the hydrogel hydrophobicity, over time. Three hydrogel groups were examined: (1) 15wt.% TGM, (2) 15wt.% TGM/DBA, and (3) 20wt.% TGM/DBA. The hydrogels were implanted within an 8mm critical size rat cranial defect for 4 and 12weeks. Implants were harvested at each timepoint and analyzed for bone formation, hydrogel mineralization and tissue response using microcomputed tomography (microCT). Histology and fibrous capsule scoring showed a light inflammatory response at 4weeks that was mitigated by 12weeks for all groups. MicroCT scoring and bone volume quantification demonstrated a similar bone formation at 4weeks that was significantly increased for the more hydrophobic hydrogel formulations - 15wt.% TGM and 20wt.% TGM/DBA - from 4weeks to 12weeks. A complementary in vitro acellular mineralization study revealed that the hydrogels exhibited calcium binding properties in the presence of serum-containing media, which was modulated by the hydrogel hydrophobicity. The tailored mineralization capacity of these injectable, dual-gelling hydrogels with hydrolysis-dependent hydrophobicity presents an exciting property for their use in bone tissue engineering applications.Item Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2(Elsevier, 2014) Needham, Clark J.; Shah, Sarita R.; Dahlin, Rebecca L.; Kinard, Lucas A.; Lam, Johnny; Watson, Brendan M.; Lu, Steven; Kasper, F. Kurtis; Mikos, Antonios G.Native osteochondral repair is often inadequate owing to the inherent properties of the tissue, and current clinical repair strategies can result in healing with a limited lifespan and donor site morbidity. This work investigates the use of polymeric gene therapy to address this problem by delivering DNA encoding for transcription factors complexed with the branched poly(ethylenimine)–hyaluronic acid (bPEI–HA) delivery vector via a porous oligo[poly(ethylene glycol) fumarate] hydrogel scaffold. To evaluate the potential of this approach, a bilayered scaffold mimicking native osteochondral tissue organization was loaded with DNA/bPEI–HA complexes. Next, bilayered implants either unloaded or loaded in a spatial fashion with bPEI–HA and DNA encoding for either Runt-related transcription factor 2 (RUNX2) or SRY (sex determining region Y)-box 5, 6, and 9 (the SOX trio), to generate bone and cartilage tissues respectively, were fabricated and implanted in a rat osteochondral defect. At 6 weeks post-implantation, micro-computed tomography analysis and histological scoring were performed on the explants to evaluate the quality and quantity of tissue repair in each group. The incorporation of DNA encoding for RUNX2 in the bone layer of these scaffolds significantly increased bone growth. Additionally, a spatially loaded combination of RUNX2 and SOX trio DNA loading significantly improved healing relative to empty hydrogels or either factor alone. Finally, the results of this study suggest that subchondral bone formation is necessary for correct cartilage healing.Item Phosphorous-containing polymers for regenerative medicine(IOP Publishing, 2014) Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications.Item Synthesis and Characterization of Injectable, Biodegradable, Phosphate-Containing, Chemically Cross-Linkable, Thermoresponsive Macromers for Bone Tissue Engineering(American Chemical Society, 2014) Watson, Brendan M.; Kasper, F. Kurtis; Engel, Paul S.; Mikos, Antonios G.Novel, injectable, biodegradable macromer solutions that form hydrogels when elevated to physiologic temperature via a dual chemical and thermo-gelation were fabricated and characterized. A thermogelling, poly(N-isopropylacrylamide)-based macromer with pendant phosphate groups was synthesized and subsequently functionalized with chemically cross-linkable methacrylate groups via degradable phosphate ester bonds, yielding a dual-gelling macromer. These dual-gelling macromers were tuned to have transition temperatures between room temperature and physiologic temperature, allowing them to undergo instantaneous thermogelation as well as chemical gelation when elevated to physiologic temperature. Additionally, the chemical cross-linking of the hydrogels was shown to mitigate hydrogel syneresis, which commonly occurs when thermogelling materials are raised above their transition temperature. Finally, degradation of the phosphate ester bonds of the cross-linked hydrogels yielded macromers that were soluble at physiologic temperature. Further characterization of the hydrogels demonstrated minimal cytotoxicity of hydrogel leachables as well as in vitro calcification, making these novel, injectable macromers promising materials for use in bone tissue engineering.