Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Watrous, Mary Margaret"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    2,4,6-trinitrotoluene reduction by hydrogenase in Clostridium acetobutylicum
    (2003) Watrous, Mary Margaret; Hughes, Joseph B.
    Unique genetic modifications to C. acetobutylicum altered the level of hydrogenase expression, allowing study of the resulting effects on the 2,4,6-trinitrotoluene (TNT) reduction rates to be possible. A strain designed to over-express the hydrogenase gene resulted in maintained TNT reduction during late growth phases when it is not typically observed. Strains exhibiting under-expression of hydrogenase produced slower TNT rates of reduction correlating to the expected inhibition of each strain type. Hydrogenase activity, measured by hydrogen production, in Clostridium acetobutylicum correlates strongly (R2 = 0.89) to TNT reduction rates. Indications suggested that hydrogenase potentially played an integral role in catalysis of TNT transformation by reducing its nitro substituents to the corresponding hydroxylamines. A mechanistic pathway is proposed by which this transformation takes place and may enhance the understanding of commonly found hydrogenases in other microorganisms and their ability to transform nitroaromatic compounds.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892