Browsing by Author "Wang, Yan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cryo-mediated exfoliation and fracturing of layered materials into 2D quantum dots(AAAS, 2017) Wang, Yan; Liu, Yang; Zhang, Jianfang; Wu, Jingjie; Xu, Hui; Wen, Xiewen; Zhang, Xiang; Tiwary, Chandra Sekhar; Yang, Wei; Vajtai, Robert; Zhang, Yong; Chopra, Nitin; Odeh, Ihab Nizar; Wu, Yucheng; Ajayan, Pulickel M.Atomically thin quantum dots from layered materials promise new science and applications, but their scalable synthesis and separation have been challenging. We demonstrate a universal approach for the preparation of quantum dots from a series of materials, such as graphite, MoS2, WS2, h-BN, TiS2, NbS2, Bi2Se3, MoTe2, Sb2Te3, etc., using a cryo-mediated liquid-phase exfoliation and fracturing process. The method relies on liquid nitrogen pretreatment of bulk layered materials before exfoliation and breakdown into atomically thin two-dimensional quantum dots of few-nanometer lateral dimensions, exhibiting size-confined optical properties. This process is efficient for a variety of common solvents with a wide range of surface tension parameters and eliminates the use of surfactants, resulting in pristine quantum dots without surfactant covering or chemical modification.Item Urothelial-to-Neural Plasticity Drives Progression to Small Cell Bladder Cancer(Cell Press, 2020) Yang, Guoliang; Bondaruk, Jolanta; Cogdell, David; Wang, Ziqiao; Lee, Sangkyou; Lee, June Goo; Zhang, Shizhen; Choi, Woonyoung; Wang, Yan; Liang, Yu; Wang, Gang; Wang, Ying; Yao, Hui; Dadhania, Vipulkumar; Gao, Jianjun; Logothetis, Christopher; Siefker-Radtke, Arlene; Kamat, Ashish; Dinney, Colin; Theodorescu, Dan; Kimmel, Marek; Wei, Peng; Guo, Charles C.; Weinstein, John N.; McConkey, David J.; Czerniak, BogdanWe report a comprehensive molecular analysis of 34 cases of small cell carcinoma (SCC) and 84 cases of conventional urothelial carcinoma (UC), with The Cancer Genome Atlas cohort of 408 conventional UC bladder cancers used as the reference. SCCs showed mutational landscapes characterized by nearly uniform inactivation of TP53 and were dominated by Sanger mutation signature 3 associated with loss of BRCA1/2 function. SCCs were characterized by downregulation of luminal and basal markers and were referred to as double-negative. Transcriptome analyses indicated that SCCs displayed lineage plasticity driven by a urothelial-to-neural phenotypic switch with a dysregulated epithelial-to-mesenchymal transition network. SCCs were depleted of immune cells, and expressed high levels of the immune checkpoint receptor, adenosine receptor A2A (ADORA2A), which is a potent inhibitor of immune infiltration. Our observations have important implications for the prognostication and development of more effective therapies for this lethal bladder cancer variant.