Browsing by Author "Wang, Xuebin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Depinning transition of bubble phases in a high Landau level(American Physical Society, 2015) Wang, Xuebin; Fu, Hailong; Du, Lingjie; Liu, Xiaoxue; Wang, Pengjie; Pfeiffer, L.N.; West, K.W.; Du, Rui-Rui; Lin, XiIn the higher Landau levels (N>0) a reentrant integer quantum Hall effect (RIQHE) state, which resides at fractional filling factors but exhibits integer Hall plateaus, has been previously observed and studied extensively. The nonlinear dynamics of the RIQHE were measured by microwave resonance, with the results consistent with an electronic bubble phase pinned by impurities. We have carried out depinning experiments on the N=2 bubble phases by using Corbino geometry, where depinning threshold values have been systematically measured as a function of magnetic fields and temperatures. Domain sizes and pinning potential of the bubble phases have been estimated from the nonlinear transport data.Item Scaling properties of the plateau transitions in the two-dimensional hole gas system(American Physical Society, 2016) Wang, Xuebin; Liu, Haiwen; Zhu, Junbo; Shan, Pujia; Wang, Pengjie; Fu, Hailong; Du, Lingjie; Pfeiffer, L.N.; West, K.W.; Xie, X.C.; Du, Rui-Rui; Lin, XiThe behavior of phase coherence is studied in two-dimensional hole gas through the integer quantum Hall plateau-to-plateau transition. From the plateau transition as a function of temperature, scaling properties of multiple transitions are analyzed. Our results are in good agreement with the assumption of the zero-point fluctuations of the coherent holes, and support the intrinsic saturation of the coherence time at low temperature limit. The critical exponent p can also be determined under the scheme of the zero-point fluctuations. The similarity and difference in experimental observations between quantum Griffiths singularity and plateau transition is discussed. The spin-orbit coupling effect's influence on the plateau transition is explored by comparing the results from different transitions.