Browsing by Author "Wang, Qi"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item An ultraweak-local discontinuous Galerkin method for nonlinear biharmonic Schrödinger equations(edp Sciences, 2024) Wang, Qi; Zhang, Lu; Ken Kennedy InstituteThis paper proposes and analyzes a fully discrete scheme for nonlinear biharmonic Schrödinger equations. We first write the single equation into a system of problems with second-order spatial derivatives and then discretize the space variable with an ultraweak discontinuous Galerkin scheme and the time variable with the Crank–Nicolson method. The proposed scheme proves to be computationally more efficient compared to the local discontinuous Galerkin method in terms of the number of equations needed to be solved at each single time step, and it is unconditionally stable without imposing any penalty terms. It also achieves optimal error convergence in L2 norm both in the solution and in the auxiliary variable with general nonlinear terms. We also prove several physically relevant properties of the discrete schemes, such as the conservation of mass and the Hamiltonian for the nonlinear biharmonic Schrödinger equations. Several numerical studies demonstrate and support our theoretical results.Item Fecal Microbiota Transplantation Derived from Alzheimer’s Disease Mice Worsens Brain Trauma Outcomes in Wild-Type Controls(MDPI, 2022) Soriano, Sirena; Curry, Kristen; Wang, Qi; Chow, Elsbeth; Treangen, Todd J.; Villapol, SoniaTraumatic brain injury (TBI) causes neuroinflammation and neurodegeneration, both of which increase the risk and accelerate the progression of Alzheimer’s disease (AD). The gut microbiome is an essential modulator of the immune system, impacting the brain. AD has been related with reduced diversity and alterations in the community composition of the gut microbiota. This study aimed to determine whether the gut microbiota from AD mice exacerbates neurological deficits after TBI in control mice. We prepared fecal microbiota transplants from 18 to 24 month old 3×Tg-AD (FMT-AD) and from healthy control (FMT-young) mice. FMTs were administered orally to young control C57BL/6 (wild-type, WT) mice after they underwent controlled cortical impact (CCI) injury, as a model of TBI. Then, we characterized the microbiota composition of the fecal samples by full-length 16S rRNA gene sequencing analysis. We collected the blood, brain, and gut tissues for protein and immunohistochemical analysis. Our results showed that FMT-AD administration stimulates a higher relative abundance of the genus Muribaculum and a decrease in Lactobacillus johnsonii compared to FMT-young in WT mice. Furthermore, WT mice exhibited larger lesion, increased activated microglia/macrophages, and reduced motor recovery after FMT-AD compared to FMT-young one day after TBI. In summary, we observed gut microbiota from AD mice to have a detrimental effect and aggravate the neuroinflammatory response and neurological outcomes after TBI in young WT mice.Item SARS-CoV-2 genomic diversity and the implications for qRT-PCR diagnostics and transmission(Cold Spring Harbor Laboratory Press, 2021) Sapoval, Nicolae; Mahmoud, Medhat; Jochum, Michael D.; Liu, Yunxi; Elworth, R. A. Leo; Wang, Qi; Albin, Dreycey; Ogilvie, Huw A.; Lee, Michael D.; Villapol, Sonia; Hernandez, Kyle M.; Berry, Irina Maljkovic; Foox, Jonathan; Beheshti, Afshin; Ternus, Krista; Aagaard, Kjersti M.; Posada, David; Mason, Christopher E.; Sedlazeck, Fritz J.; Treangen, Todd J.The COVID-19 pandemic has sparked an urgent need to uncover the underlying biology of this devastating disease. Though RNA viruses mutate more rapidly than DNA viruses, there are a relatively small number of single nucleotide polymorphisms (SNPs) that differentiate the main SARS-CoV-2 lineages that have spread throughout the world. In this study, we investigated 129 RNA-seq data sets and 6928 consensus genomes to contrast the intra-host and inter-host diversity of SARS-CoV-2. Our analyses yielded three major observations. First, the mutational profile of SARS-CoV-2 highlights intra-host single nucleotide variant (iSNV) and SNP similarity, albeit with differences in C > U changes. Second, iSNV and SNP patterns in SARS-CoV-2 are more similar to MERS-CoV than SARS-CoV-1. Third, a significant fraction of insertions and deletions contribute to the genetic diversity of SARS-CoV-2. Altogether, our findings provide insight into SARS-CoV-2 genomic diversity, inform the design of detection tests, and highlight the potential of iSNVs for tracking the transmission of SARS-CoV-2.Item Spin excitations in metallic kagome lattice FeSn and CoSn(Springer Nature, 2021) Xie, Yaofeng; Chen, Lebing; Chen, Tong; Wang, Qi; Yin, Qiangwei; Stewart, J. Ross; Stone, Matthew B.; Daemen, Luke L.; Feng, Erxi; Cao, Huibo; Lei, Hechang; Yin, Zhiping; MacDonald, Allan H.; Dai, PengchengIn two-dimensional (2D) metallic kagome lattice materials, destructive interference of electronic hopping pathways around the kagome bracket can produce nearly localized electrons, and thus electronic bands that are flat in momentum space. When ferromagnetic order breaks the degeneracy of the electronic bands and splits them into the spin-up majority and spin-down minority electronic bands, quasiparticle excitations between the spin-up and spin-down flat bands should form a narrow localized spin-excitation Stoner continuum coexisting with well-defined spin waves in the long wavelengths. Here we report inelastic neutron scattering studies of spin excitations in 2D metallic kagome lattice antiferromagnetic FeSn and paramagnetic CoSn, where angle resolved photoemission spectroscopy experiments found spin-polarized and nonpolarized flat bands, respectively, below the Fermi level. Our measurements on FeSn and CoSn reveal well-defined spin waves extending above 140 meV and correlated paramagnetic scattering around Γ point below 90 meV, respectively. In addition, we observed non-dispersive excitations at ~170 meV and ~360 meV arising mostly from hydrocarbon scattering of the CYTOP-M used to glue the samples to aluminum holder. Therefore, our results established the evolution of spin excitations in FeSn and CoSn, and identified anomalous flat modes overlooked by the neutron scattering community for many years.